Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS 5 × S 5

  • V. Forini
  • A.A. Tseytlin
  • E. Vescovi
Open Access
Regular Article - Theoretical Physics


We revisit the computation of the 1-loop string correction to the “latitude” minimal surface in AdS 5 × S 5 representing 1/4 BPS Wilson loop in planar \( \mathcal{N}=4 \) SYM theory previously addressed in arXiv:1512.00841 and arXiv:1601.04708. We resolve the problem of matching with the subleading term in the strong coupling expansion of the exact gauge theory result (derived previously from localization) using a different method to compute determinants of 2d string fluctuation operators. We apply perturbation theory in a small parameter (angle of the latitude) corresponding to an expansion near the AdS 2 minimal surface representing 1/2 BPS circular Wilson loop. This allows us to compute the corrections to the heat kernels and zeta-functions of the operators in terms of the known heat kernels on AdS 2. We apply the same method also to two other examples of Wilson loop surfaces: generalized cusp and k-wound circle.


AdS-CFT Correspondence Superstrings and Heterotic Strings Wilson’t Hooft and Polyakov loops 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The Operator product expansion for Wilson loops and surfaces in the large-N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    R. Kallosh and A.A. Tseytlin, Simplifying superstring action on AdS 5 × S 5, JHEP 10 (1998) 016 [hep-th/9808088] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Förste, D. Ghoshal and S. Theisen, Stringy corrections to the Wilson loop in N = 4 super Yang-Mills theory, JHEP 08 (1999) 013 [hep-th/9903042] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 × S 5 : Semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    E.I. Buchbinder and A.A. Tseytlin, 1/N correction in the D3-brane description of a circular Wilson loop at strong coupling, Phys. Rev. D 89 (2014) 126008 [arXiv:1404.4952] [INSPIRE].ADSGoogle Scholar
  9. [9]
    N. Drukker and B. Fiol, On the integrability of Wilson loops in AdS 5 × S 5 : Some periodic ansatze, JHEP 01 (2006) 056 [hep-th/0506058] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    N. Drukker, 1/4 BPS circular loops, unstable world-sheet instantons and the matrix model, JHEP 09 (2006) 004 [hep-th/0605151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V. Forini, V.G.M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Remarks on the geometrical properties of semiclassically quantized strings, J. Phys. A 48 (2015) 475401 [arXiv:1507.01883] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    V. Forini, V. Giangreco M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Precision calculation of 1/4-BPS Wilson loops in AdS 5 × S 5, JHEP 02 (2016) 105 [arXiv:1512.00841] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Faraggi, L.A. Pando Zayas, G.A. Silva and D. Trancanelli, Toward precision holography with supersymmetric Wilson loops, JHEP 04 (2016) 053 [arXiv:1601.04708] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    R. Bergamin and A.A. Tseytlin, Heat kernels on cone of AdS 2 and k-wound circular Wilson loop in AdS 5 × S 5 superstring, J. Phys. A 49 (2016) 14LT01 [arXiv:1510.06894] [INSPIRE].
  16. [16]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    G.W. Semenoff and K. Zarembo, Wilson loops in SYM theory: From weak to strong coupling, Nucl. Phys. Proc. Suppl. 108 (2002) 106, in Light cone physics: Particles and strings. Proceedings, International Workshop, Trento, Italy, 3-11 September 2001, pp. 106-112 [hep-th/0202156] [INSPIRE].
  18. [18]
    N. Drukker and D.J. Gross, An Exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, JHEP 12 (2012) 067 [arXiv:0906.0638] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    R.E. Gamboa Saravi, M.A. Muschietti and J.E. Solomin, On Perturbation Theory for Regularized Determinants of Differential Operators, Commun. Math. Phys. 89 (1983) 363 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    V. Mukhanov and S. Winitzki, Introduction to Quantum Effects in Gravity, Cambridge University Press (2007).Google Scholar
  24. [24]
    R. Camporesi, Harmonic analysis and propagators on homogeneous spaces, Phys. Rept. 196 (1990) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    R. Camporesi, The Spinor heat kernel in maximally symmetric spaces, Commun. Math. Phys. 148 (1992) 283 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    R. Camporesi and A. Higuchi, On the Eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].
  28. [28]
    I.M. Gelfand and A.M. Yaglom, Integration in functional spaces and it applications in quantum physics, J. Math. Phys. 1 (1960) 48. [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    R. Forman, Functional determinants and geometry, Invent. Math. 88 (1987) 447.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    R. Forman, Functional determinants and geometry (Erratum), Invent. Math. 108 (1992) 453.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A.J. McKane and M.B. Tarlie, Regularization of functional determinants using boundary perturbations, J. Phys. A 28 (1995) 6931 [cond-mat/9509126] [INSPIRE].
  32. [32]
    K. Kirsten and A.J. McKane, Functional determinants by contour integration methods, Annals Phys. 308 (2003) 502 [math-ph/0305010] [INSPIRE].
  33. [33]
    K. Kirsten and A.J. McKane, Functional determinants for general Sturm-Liouville problems, J. Phys. A 37 (2004) 4649 [math-ph/0403050] [INSPIRE].
  34. [34]
    K. Kirsten and P. Loya, Computation of determinants using contour integrals, Am. J. Phys. 76 (2008) 60 [arXiv:0707.3755] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    G.V. Dunne, Functional determinants in quantum field theory, J. Phys. A 41 (2008) 304006, in Proceedings, 5th International Symposium on Quantum theory and symmetries (QTS5) [arXiv:0711.1178] [INSPIRE].
  36. [36]
    S.A. Frolov, I.Y. Park and A.A. Tseytlin, On one-loop correction to energy of spinning strings in S 5, Phys. Rev. D 71 (2005) 026006 [hep-th/0408187] [INSPIRE].ADSGoogle Scholar
  37. [37]
    A. Dekel and T. Klose, Correlation Function of Circular Wilson Loops at Strong Coupling, JHEP 11 (2013) 117 [arXiv:1309.3203] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G.V. Dunne and K. Kirsten, Functional determinants for radial operators, J. Phys. A 39 (2006) 11915 [hep-th/0607066] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    M. Beccaria, G.V. Dunne, V. Forini, M. Pawellek and A.A. Tseytlin, Exact computation of one-loop correction to energy of spinning folded string in AdS 5 × S 5, J. Phys. A 43 (2010) 165402 [arXiv:1001.4018] [INSPIRE].ADSzbMATHGoogle Scholar
  42. [42]
    V. Forini, Quark-antiquark potential in AdS at one loop, JHEP 11 (2010) 079 [arXiv:1009.3939] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    V. Forini, V.G.M. Puletti and O. Ohlsson Sax, The generalized cusp in AdS 4 × CP 3 and more one-loop results from semiclassical strings, J. Phys. A 46 (2013) 115402 [arXiv:1204.3302] [INSPIRE].ADSzbMATHGoogle Scholar
  44. [44]
    V. Forini, V.G.M. Puletti, M. Pawellek and E. Vescovi, One-loop spectroscopy of semiclassically quantized strings: bosonic sector, J. Phys. A 48 (2015) 085401 [arXiv:1409.8674] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  45. [45]
    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].ADSMathSciNetGoogle Scholar
  46. [46]
    D.V. Vassilevich, Heat kernel expansion: Users manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    D. Fursaev and D. Vassilevich, Operators, Geometry and Quanta: Methods of Spectral Geometry in Quantum Field Theory, Springer Verlag (2011).Google Scholar
  48. [48]
    P.B. Gilkey, Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem, CRC Press (1995).Google Scholar
  49. [49]
    K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    J. Aguilera-Damia, D.H. Correa and G.A. Silva, Semiclassical partition function for strings dual to Wilson loops with small cusps in ABJM, JHEP 03 (2015) 002 [arXiv:1412.4084] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Bordag, K. Kirsten and J.S. Dowker, Heat kernels and functional determinants on the generalized cone, Commun. Math. Phys. 182 (1996) 371 [hep-th/9602089] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    E. Vescovi, Perturbative and non-perturbative approaches to string sigma-models in AdS/CFT, Ph.D. Thesis (2016),
  53. [53]
    I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press (1984), pp. 359-366.Google Scholar
  54. [54]
    T. Jones and D. Kucerovsky, Heat Kernel for Simply-Connected Riemann Surfaces, arXiv:1007.5467.
  55. [55]
    T. Jones, The heat kernel on noncompact Riemann surface, Ph.D. Thesis (2008).Google Scholar
  56. [56]
    R. Bergamin, The AdS 5 xS 5 string and the one-loop correction to the circular Wilson loop, MSc Thesis (2015),

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institut für Physik, Humboldt-Universität zu Berlin, IRIS AdlershofBerlinGermany
  2. 2.Theoretical Physics Group, Blackett LaboratoryImperial CollegeLondonU.K.
  3. 3.Institute of PhysicsUniversity of São PauloSão PauloBrazil

Personalised recommendations