Advertisement

Leptogenesis and residual CP symmetry

  • Peng Chen
  • Gui-Jun DingEmail author
  • Stephen F. King
Open Access
Regular Article - Theoretical Physics

Abstract

We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

Keywords

CP violation Discrete Symmetries Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Sov. Phys. Usp. 34 (1991) 392 [JETP Lett. 5 (1967) 24] [Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].
  2. [2]
    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino mass and mixing: from theory to experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.F. King, Models of neutrino mass, mixing and CP-violation, J. Phys. G 42 (2015) 123001 [arXiv:1510.02091] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  8. [8]
    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  9. [9]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on Unified Theory and Baryon Number of the Universe, O. Sawada and A. Sugamoto eds., KEK, Japan (1979), pg. 95 [INSPIRE].
  11. [11]
    P. Ramond, The family group in grand unified theories, invited talk given at conference C79-02-25, Palm Coast FL U.S.A. February 1979, pg. 265 [CALT-68-709] [hep-ph/9809459] [INSPIRE].
  12. [12]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Niewwenhuizen and D. Freedman eds., North Holland, Amsterdam The Netherlands (1979), pg. 315 [Conf. Proc. C 790927 (1979) 315] [PRINT-80-0576] [arXiv:1306.4669] [INSPIRE].
  13. [13]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Di Bari, An introduction to leptogenesis and neutrino properties, Contemp. Phys. 53 (2012) 315 [arXiv:1206.3168] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Blanchet and P. Di Bari, The minimal scenario of leptogenesis, New J. Phys. 14 (2012) 125012 [arXiv:1211.0512] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  17. [17]
    R.H. Cyburt, B.D. Fields, K.A. Olive and T.-H. Yeh, Big bang nucleosynthesis: 2015, arXiv:1505.01076 [INSPIRE].
  18. [18]
    M. Holthausen, K.S. Lim and M. Lindner, Lepton mixing patterns from a scan of finite discrete groups, Phys. Lett. B 721 (2013) 61 [arXiv:1212.2411] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S.F. King, T. Neder and A.J. Stuart, Lepton mixing predictions from Δ(6n 2) family symmetry, Phys. Lett. B 726 (2013) 312 [arXiv:1305.3200] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R.M. Fonseca and W. Grimus, Classification of lepton mixing matrices from finite residual symmetries, JHEP 09 (2014) 033 [arXiv:1405.3678] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C.-Y. Yao and G.-J. Ding, Lepton and quark mixing patterns from finite flavor symmetries, Phys. Rev. D 92 (2015) 096010 [arXiv:1505.03798] [INSPIRE].ADSGoogle Scholar
  22. [22]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Leptogenesis in minimal predictive seesaw models, JHEP 10 (2015) 104 [arXiv:1505.05504] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    F. Feruglio, C. Hagedorn and R. Ziegler, Lepton mixing parameters from discrete and CP symmetries, JHEP 07 (2013) 027 [arXiv:1211.5560] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Holthausen, M. Lindner and M.A. Schmidt, CP and discrete flavour symmetries, JHEP 04 (2013) 122 [arXiv:1211.6953] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    G. Ecker, W. Grimus and W. Konetschny, Quark mass matrices in left-right symmetric gauge theories, Nucl. Phys. B 191 (1981) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Ecker, W. Grimus and H. Neufeld, Spontaneous CP violation in left-right symmetric gauge theories, Nucl. Phys. B 247 (1984) 70 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Ecker, W. Grimus and H. Neufeld, A standard form for generalized CP transformations, J. Phys. A 20 (1987) L807 [INSPIRE].ADSGoogle Scholar
  28. [28]
    H. Neufeld, W. Grimus and G. Ecker, Generalized CP invariance, neutral flavor conservation and the structure of the mixing matrix, Int. J. Mod. Phys. A 3 (1988) 603 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    W. Grimus and M.N. Rebelo, Automorphisms in gauge theories and the definition of CP and P, Phys. Rept. 281 (1997) 239 [hep-ph/9506272] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    P.F. Harrison and W.G. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P.F. Harrison and W.G. Scott, μ-τ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    P.F. Harrison and W.G. Scott, The simplest neutrino mass matrix, Phys. Lett. B 594 (2004) 324 [hep-ph/0403278] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    W. Grimus and L. Lavoura, A nonstandard CP transformation leading to maximal atmospheric neutrino mixing, Phys. Lett. B 579 (2004) 113 [hep-ph/0305309] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W. Grimus and L. Lavoura, μ-τ interchange symmetry and lepton mixing, Fortsch. Phys. 61 (2013) 535 [arXiv:1207.1678] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    Y. Farzan and A. Yu. Smirnov, Leptonic CP-violation: zero, maximal or between the two extremes, JHEP 01 (2007) 059 [hep-ph/0610337] [INSPIRE].
  36. [36]
    P. Chen, G.-J. Ding, F. Gonzalez-Canales and J.W.F. Valle, Generalized μ-τ reflection symmetry and leptonic CP-violation, Phys. Lett. B 753 (2016) 644 [arXiv:1512.01551] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M.-C. Chen, M. Fallbacher, K.T. Mahanthappa, M. Ratz and A. Trautner, CP violation from finite groups, Nucl. Phys. B 883 (2014) 267 [arXiv:1402.0507] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    P. Chen, C.-C. Li and G.-J. Ding, Lepton flavor mixing and CP symmetry, Phys. Rev. D 91 (2015) 033003 [arXiv:1412.8352] [INSPIRE].ADSGoogle Scholar
  39. [39]
    P. Chen, C.-Y. Yao and G.-J. Ding, Neutrino mixing from CP symmetry, Phys. Rev. D 92 (2015) 073002 [arXiv:1507.03419] [INSPIRE].ADSGoogle Scholar
  40. [40]
    L.L. Everett, T. Garon and A.J. Stuart, A bottom-up approach to lepton flavor and CP symmetries, JHEP 04 (2015) 069 [arXiv:1501.04336] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G.-J. Ding, S.F. King and A.J. Stuart, Generalised CP and A 4 family symmetry, JHEP 12 (2013) 006 [arXiv:1307.4212] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    G.-J. Ding, S.F. King, C. Luhn and A.J. Stuart, Spontaneous CP-violation from vacuum alignment in S 4 models of leptons, JHEP 05 (2013) 084 [arXiv:1303.6180] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    F. Feruglio, C. Hagedorn and R. Ziegler, A realistic pattern of lepton mixing and masses from S 4 and CP, Eur. Phys. J. C 74 (2014) 2753 [arXiv:1303.7178] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Luhn, Trimaximal TM 1 neutrino mixing in S 4 with spontaneous CP-violation, Nucl. Phys. B 875 (2013) 80 [arXiv:1306.2358] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    C.-C. Li and G.-J. Ding, Generalised CP and trimaximal TM 1 lepton mixing in S 4 family symmetry, Nucl. Phys. B 881 (2014) 206 [arXiv:1312.4401] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    C.-C. Li and G.-J. Ding, Deviation from bimaximal mixing and leptonic CP phases in S 4 family symmetry and generalized CP, JHEP 08 (2015) 017 [arXiv:1408.0785] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    C.-C. Li and G.-J. Ding, Lepton mixing in A 5 family symmetry and generalized CP, JHEP 05 (2015) 100 [arXiv:1503.03711] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Di Iura, C. Hagedorn and D. Meloni, Lepton mixing from the interplay of the alternating group A 5 and CP, JHEP 08 (2015) 037 [arXiv:1503.04140] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    P. Ballett, S. Pascoli and J. Turner, Mixing angle and phase correlations from A 5 with generalized CP and their prospects for discovery, Phys. Rev. D 92 (2015) 093008 [arXiv:1503.07543] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J. Turner, Predictions for leptonic mixing angle correlations and nontrivial Dirac CP-violation from A 5 with generalized CP symmetry, Phys. Rev. D 92 (2015) 116007 [arXiv:1507.06224] [INSPIRE].ADSGoogle Scholar
  51. [51]
    G.C. Branco, J.M. Gerard and W. Grimus, Geometrical T violation, Phys. Lett. B 136 (1984) 383 [INSPIRE].ADSGoogle Scholar
  52. [52]
    G.C. Branco, I. de Medeiros Varzielas and S.F. King, Invariant approach to CP in unbroken Δ(27), Nucl. Phys. B 899 (2015) 14 [arXiv:1505.06165] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    G.C. Branco, I. de Medeiros Varzielas and S.F. King, Invariant approach to CP in family symmetry models, Phys. Rev. D 92 (2015) 036007 [arXiv:1502.03105] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    G.-J. Ding and Y.-L. Zhou, Predicting lepton flavor mixing from Δ(48) and generalized CP symmetries, Chin. Phys. C 39 (2015) 021001 [arXiv:1312.5222] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    G.-J. Ding and Y.-L. Zhou, Lepton mixing parameters from Δ(48) family symmetry and generalised CP, JHEP 06 (2014) 023 [arXiv:1404.0592] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G.-J. Ding and S.F. King, Generalized CP and Δ(96) family symmetry, Phys. Rev. D 89 (2014) 093020 [arXiv:1403.5846] [INSPIRE].ADSGoogle Scholar
  57. [57]
    C. Hagedorn, A. Meroni and E. Molinaro, Lepton mixing from Δ(3n 2) and Δ(6n 2) and CP, Nucl. Phys. B 891 (2015) 499 [arXiv:1408.7118] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    G.-J. Ding and S.F. King, Generalized CP and Δ(3n 2) family symmetry for semi-direct predictions of the PMNS matrix, Phys. Rev. D 93 (2016) 025013 [arXiv:1510.03188] [INSPIRE].ADSGoogle Scholar
  59. [59]
    S.F. King and T. Neder, Lepton mixing predictions including Majorana phases from Δ(6n 2) flavour symmetry and generalised CP, Phys. Lett. B 736 (2014) 308 [arXiv:1403.1758] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    G.-J. Ding, S.F. King and T. Neder, Generalised CP and Δ(6n 2) family symmetry in semi-direct models of leptons, JHEP 12 (2014) 007 [arXiv:1409.8005] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    C.-C. Li, C.-Y. Yao and G.-J. Ding, Lepton mixing predictions from infinite group series D 9n,3n(1) with generalized CP, arXiv:1601.06393 [INSPIRE].
  62. [62]
    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    S. Antusch, S.F. King and A. Riotto, Flavour-dependent leptogenesis with sequential dominance, JCAP 11 (2006) 011 [hep-ph/0609038] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    S. Antusch and A.M. Teixeira, Towards constraints on the SUSY seesaw from flavour-dependent leptogenesis, JCAP 02 (2007) 024 [hep-ph/0611232] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    C.S. Fong, M.C. Gonzalez-Garcia, E. Nardi and J. Racker, Supersymmetric leptogenesis, JCAP 12 (2010) 013 [arXiv:1009.0003] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  66. [66]
    L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    T. Endoh, T. Morozumi and Z.-H. Xiong, Primordial lepton family asymmetries in seesaw model, Prog. Theor. Phys. 111 (2004) 123 [hep-ph/0308276] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  68. [68]
    A. Abada, S. Davidson, A. Ibarra, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    C.S. Fong, E. Nardi and A. Riotto, Leptogenesis in the universe, Adv. High Energy Phys. 2012 (2012) 158303 [arXiv:1301.3062] [INSPIRE].
  71. [71]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    S. Pascoli, S.T. Petcov and A. Riotto, Leptogenesis and low energy CP-violation in neutrino physics, Nucl. Phys. B 774 (2007) 1 [hep-ph/0611338] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    S. Pascoli, S.T. Petcov and A. Riotto, Connecting low energy leptonic CP-violation to leptogenesis, Phys. Rev. D 75 (2007) 083511 [hep-ph/0609125] [INSPIRE].ADSzbMATHGoogle Scholar
  74. [74]
    G.C. Branco, R. Gonzalez Felipe and F.R. Joaquim, A new bridge between leptonic CP-violation and leptogenesis, Phys. Lett. B 645 (2007) 432 [hep-ph/0609297] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S. Blanchet and P. Di Bari, The minimal scenario of leptogenesis, New J. Phys. 14 (2012) 125012 [arXiv:1211.0512] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    R.N. Mohapatra and C.C. Nishi, Implications of μ-τ flavored CP symmetry of leptons, JHEP 08 (2015) 092 [arXiv:1506.06788] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  80. [80]
    M.N. Rebelo, Leptogenesis without CP-violation at low-energies, Phys. Rev. D 67 (2003) 013008 [hep-ph/0207236] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    E. Bertuzzo, P. Di Bari, F. Feruglio and E. Nardi, Flavor symmetries, leptogenesis and the absolute neutrino mass scale, JHEP 11 (2009) 036 [arXiv:0908.0161] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations