Advertisement

On the reconstruction of Lifshitz spacetimes

  • Simon A. GentleEmail author
  • Cynthia Keeler
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the reconstruction of a Lifshitz spacetime from three perspectives: differential entropy (or ‘hole-ography’), causal wedges and entanglement wedges. We find that not all time-varying bulk curves in vacuum Lifshitz can be reconstructed via the differential entropy approach, adding a caveat to the general analysis of [1]. We show that the causal wedge for Lifshitz spacetimes degenerates, while the entanglement wedge requires the additional consideration of a set of boundary-emanating light-sheets. The need to include bulk surfaces with no clear field theory interpretation in the differential entropy construction and the change in the entanglement wedge formation both serve as warnings against a naive application of holographic entanglement entropy proposals in Lifshitz spacetimes.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Headrick, R.C. Myers and J. Wien, Holographic holes and differential entropy, JHEP 10 (2014) 149 [arXiv:1408.4770] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    V. Balasubramanian, S.B. Giddings and A.E. Lawrence, What do CFTs tell us about anti-de Sitter space-times?, JHEP 03 (1999) 001 [hep-th/9902052] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    B. Freivogel and B. Mosk, Properties of causal holographic information, JHEP 09 (2013) 100 [arXiv:1304.7229] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    C. Keeler, G. Knodel and J.T. Liu, What do non-relativistic CFTs tell us about Lifshitz spacetimes?, JHEP 01 (2014) 062 [arXiv:1308.5689] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Keeler, G. Knodel and J.T. Liu, Hidden horizons in non-relativistic AdS/CFT, JHEP 08 (2014) 024 [arXiv:1404.4877] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglementthermodynamics’, JHEP 04 (2014) 195 [arXiv:1308.3716] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from entanglement in holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Hammersley, Extracting the bulk metric from boundary information in asymptotically AdS spacetimes, JHEP 12 (2006) 047 [hep-th/0609202] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J. Hammersley, Numerical metric extraction in AdS/CFT, Gen. Rel. Grav. 40 (2008) 1619 [arXiv:0705.0159] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Bilson, Extracting spacetimes using the AdS/CFT conjecture, JHEP 08 (2008) 073 [arXiv:0807.3695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S. Bilson, Extracting spacetimes using the AdS/CFT conjecture. Part II, JHEP 02 (2011) 050 [arXiv:1012.1812] [INSPIRE].
  15. [15]
    V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, Bulk curves from boundary data in holography, Phys. Rev. D 89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R.C. Myers, J. Rao and S. Sugishita, Holographic holes in higher dimensions, JHEP 06 (2014) 044 [arXiv:1403.3416] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  22. [22]
    M. Taylor, Lifshitz holography, Class. Quant. Grav. 33 (2016) 033001 [arXiv:1512.03554] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points, JHEP 06 (2009) 084 [arXiv:0905.0688] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    S.N. Solodukhin, Entanglement entropy in non-relativistic field theories, JHEP 04 (2010) 101 [arXiv:0909.0277] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B.S. Kim, Schrödinger holography with and without hyperscaling violation, JHEP 06 (2012) 116 [arXiv:1202.6062] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Alishahiha, A.F. Astaneh and M.R.M. Mozaffar, Thermalization in backgrounds with hyperscaling violating factor, Phys. Rev. D 90 (2014) 046004 [arXiv:1401.2807] [INSPIRE].ADSGoogle Scholar
  28. [28]
    P. Fonda et al., Holographic thermalization with Lifshitz scaling and hyperscaling violation, JHEP 08 (2014) 051 [arXiv:1401.6088] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Fischetti and D. Marolf, Complex entangling surfaces for AdS and Lifshitz black holes?, Class. Quant. Grav. 31 (2014) 214005 [arXiv:1407.2900] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S.M. Hosseini and Á. Véliz-Osorio, Entanglement and mutual information in two-dimensional nonrelativistic field theories, Phys. Rev. D 93 (2016) 026010 [arXiv:1510.03876] [INSPIRE].ADSGoogle Scholar
  31. [31]
    H. Singh, Lifshitz to AdS flow with interpolating p-brane solutions, JHEP 08 (2013) 097 [arXiv:1305.3784] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    H. Singh, Schrödinger spacetimes with screen and reduced entanglement, arXiv:1309.7908 [INSPIRE].
  33. [33]
    E. Fradkin and J.E. Moore, Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum, Phys. Rev. Lett. 97 (2006) 050404 [cond-mat/0605683] [INSPIRE].
  34. [34]
    B. Hsu and E. Fradkin, Universal behavior of entanglement in 2D quantum critical dimer models, J. Stat. Mech. (2010) P09004 [arXiv:1006.1361] [INSPIRE].
  35. [35]
    M. Oshikawa, Boundary conformal field theory and entanglement entropy in two-dimensional quantum Lifshitz critical point, arXiv:1007.3739 [INSPIRE].
  36. [36]
    S. Inglis and R.G. Melko, Entanglement at a two-dimensional quantum critical point: a T =0 projector quantum Monte Carlo study,New J. Phys. 15 (2013) 073048.Google Scholar
  37. [37]
    P. Hořava and C.M. Melby-Thompson, Anisotropic conformal infinity, Gen. Rel. Grav. 43 (2011) 1391 [arXiv:0909.3841] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    S.F. Ross, Holography for asymptotically locally Lifshitz spacetimes, Class. Quant. Grav. 28 (2011) 215019 [arXiv:1107.4451] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    W. Chemissany and I. Papadimitriou, Lifshitz holography: the whole shebang, JHEP 01 (2015) 052 [arXiv:1408.0795] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Andrade, C. Keeler, A. Peach and S.F. Ross, Schrödinger holography for z < 2, Class. Quant. Grav. 32 (2015) 035015 [arXiv:1408.7103] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    T. Andrade, C. Keeler, A. Peach and S.F. Ross, Schrödinger holography with z = 2, Class. Quant. Grav. 32 (2015) 085006 [arXiv:1412.0031] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    J. Hartong, E. Kiritsis and N.A. Obers, Lifshitz space-times for Schrödinger holography, Phys. Lett. B 746 (2015) 318 [arXiv:1409.1519] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    J. Hartong, E. Kiritsis and N.A. Obers, Schrödinger invariance from Lifshitz isometries in holography and field theory, Phys. Rev. D 92 (2015) 066003 [arXiv:1409.1522] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Torsional Newton-Cartan geometry and Lifshitz holography, Phys. Rev. D 89 (2014) 061901 [arXiv:1311.4794] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Boundary stress-energy tensor and Newton-Cartan geometry in Lifshitz holography, JHEP 01 (2014) 057 [arXiv:1311.6471] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    C. Hoyos and P. Koroteev, On the null energy condition and causality in Lifshitz holography, Phys. Rev. D 82 (2010) 084002 [Erratum ibid. D 82 (2010) 109905] [arXiv:1007.1428] [INSPIRE].
  48. [48]
    N. Engelhardt and S. Fischetti, Covariant constraints on hole-ography, Class. Quant. Grav. 32 (2015) 195021 [arXiv:1507.00354] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    V.E. Hubeny, M. Rangamani and E. Tonni, Global properties of causal wedges in asymptotically AdS spacetimes, JHEP 10 (2013) 059 [arXiv:1306.4324] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    R.M. Wald, General relativity, Chicago University Press, Chicago U.S.A. (1984) [INSPIRE].CrossRefzbMATHGoogle Scholar
  52. [52]
    W.R. Kelly and A.C. Wall, Coarse-grained entropy and causal holographic information in AdS/CFT, JHEP 03 (2014) 118 [arXiv:1309.3610] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    S.A. Gentle and M. Rangamani, Holographic entanglement and causal information in coherent states, JHEP 01 (2014) 120 [arXiv:1311.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    R. Bousso, The holographic principle, Rev. Mod. Phys. 74 (2002) 825 [hep-th/0203101] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    A. Bagchi, R. Basu, D. Grumiller and M. Riegler, Entanglement entropy in Galilean conformal field theories and flat holography, Phys. Rev. Lett. 114 (2015) 111602 [arXiv:1410.4089] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S.M. Hosseini and Á. Véliz-Osorio, Gravitational anomalies, entanglement entropy and flat-space holography, Phys. Rev. D 93 (2016) 046005 [arXiv:1507.06625] [INSPIRE].ADSGoogle Scholar
  58. [58]
    A. Castro, D.M. Hofman and N. Iqbal, Entanglement entropy in warped conformal field theories, JHEP 02 (2016) 033 [arXiv:1511.00707] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    F.M. Haehl, Comments on universal properties of entanglement entropy and bulk reconstruction, JHEP 10 (2015) 159 [arXiv:1508.00766] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    J. de Boer, M.P. Heller, R.C. Myers and Y. Neiman, Holographic de Sitter geometry from entanglement in conformal field theory, Phys. Rev. Lett. 116 (2016) 061602 [arXiv:1509.00113] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].
  62. [62]
    E.H. Lieb and D.W. Robinson, The finite group velocity of quantum spin systems, Commun. Math. Phys. 28 (1972) 251 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    D.M. Hofman and B. Rollier, Warped conformal field theory as lower spin gravity, Nucl. Phys. B 897 (2015) 1 [arXiv:1411.0672] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.
  2. 2.Niels Bohr International Academy, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations