Advertisement

On the reduction of generalized polylogarithms to Li n and Li2,2 and on the evaluation thereof

  • Hjalte Frellesvig
  • Damiano Tommasini
  • Christopher Wever
Open Access
Regular Article - Theoretical Physics

Abstract

We give expressions for all generalized polylogarithms up to weight four in terms of the functions log, Li n , and Li2,2, valid for arbitrary complex variables. Furthermore we provide algorithms for manipulation and numerical evaluation of Li n and Li2,2, and add codes in Mathematica and C++ implementing the results. With these results we calculate a number of previously unknown integrals, which we add in appendix C.

Keywords

NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

13130_2016_3614_MOESM1_ESM.zip (808 kb)
ESM 1 (ZIP 808 kb)

References

  1. [1]
    E.E. Kummer, Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen (in German), J. Reine Angew. Math. 21 (1840) 74.MathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Poincaré, Sur les groupes des équations linéaires (in French), Acta Math. 4 (1883) 215.Google Scholar
  3. [3]
    K.-T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  8. [8]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
  9. [9]
    U. Aglietti and R. Bonciani, Master integrals with 2 and 3 massive propagators for the 2 loop electroweak form-factorplanar case, Nucl. Phys. B 698 (2004) 277 [hep-ph/0401193] [INSPIRE].
  10. [10]
    J.G. Korner, Z. Merebashvili and M. Rogal, Laurent series expansion of a class of massive scalar one-loop integrals up to \( \mathcal{O}\left({\varepsilon}^2\right) \) in terms of multiple polylogarithms, J. Math. Phys. 47 (2006) 072302 [hep-ph/0512159] [INSPIRE].
  11. [11]
    R. Bonciani, G. Degrassi and A. Vicini, On the generalized harmonic polylogarithms of one complex variable, Comput. Phys. Commun. 182 (2011) 1253 [arXiv:1007.1891] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J. Ablinger, J. Blumlein and C. Schneider, Harmonic sums and polylogarithms generated by cyclotomic polynomials, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, JHEP 05 (2014) 090 [arXiv:1402.7078] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons, JHEP 09 (2014) 043 [arXiv:1404.5590] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C.G. Papadopoulos, D. Tommasini and C. Wever, Two-loop master integrals with the simplified differential equations approach, JHEP 01 (2015) 072 [arXiv:1409.6114] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function F 2(x, Q 2) and the anomalous dimension, Nucl. Phys. B 890 (2014) 48 [arXiv:1409.1135] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  17. [17]
    T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [arXiv:1511.05409] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C.G. Papadopoulos, D. Tommasini and C. Wever, The pentabox master integrals with the simplified differential equations approach, arXiv:1511.09404 [INSPIRE].
  19. [19]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Duhr, Mathematical aspects of scattering amplitudes, in Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014), Boulder CO U.S.A. June 2-27 2014 [arXiv:1411.7538] [INSPIRE].
  21. [21]
    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  22. [22]
    S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys. B 704 (2005) 349 [hep-ph/0406160] [INSPIRE].
  23. [23]
    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph with arbitrary masses, J. Math. Phys. 54 (2013) 052303 [arXiv:1302.7004] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    S. Bloch and P. Vanhove, The elliptic dilogarithm for the sunset graph, arXiv:1309.5865 [INSPIRE].
  25. [25]
    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms, J. Math. Phys. 55 (2014) 102301 [arXiv:1405.5640] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    L. Adams, C. Bogner and S. Weinzierl, The iterated structure of the all-order result for the two-loop sunrise integral, arXiv:1512.05630 [INSPIRE].
  27. [27]
    S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. von Manteuffel and C. Studerus, Massive planar and non-planar double box integrals for light N f contributions to ggtt, JHEP 10 (2013) 037 [arXiv:1306.3504] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for \( q\overline{q} \) V 1 V 2 → 4 leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Bonciani, A. Ferroglia, T. Gehrmann, A. von Manteuffel and C. Studerus, Light-quark two-loop corrections to heavy-quark pair production in the gluon fusion channel, JHEP 12 (2013) 038 [arXiv:1309.4450] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello and V.A. Smirnov, Next-to-leading order QCD corrections to the decay width HZγ, JHEP 08 (2015) 108 [arXiv:1505.00567] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Gehrmann, S. Guns and D. Kara, The rare decay HZγ in perturbative QCD, JHEP 09 (2015) 038 [arXiv:1505.00561] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  35. [35]
    T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun. 144 (2002) 200 [hep-ph/0111255] [INSPIRE].
  36. [36]
    R.E. Crandall, Note on fast polylogarithm computation, (2006).Google Scholar
  37. [37]
    J.M. Borwein, D.M. Bradley, D.J. Broadhurst and P. Lisonek, Special values of multiple polylogarithms, Trans. Amer. Math. Soc. 353 (2001) 907 [math/9910045] [INSPIRE].
  38. [38]
    M.E. Hoffman, Algebraic aspects of multiple zeta values, math/0309425.
  39. [39]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    J. Ablinger, J. Blümlein and C. Schneider, Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    B.S. Institution, The C standard: incorporating technical corrigendum 1, BS ISO/IEC 9899/1999, John Wiley, U.S.A. (2003).Google Scholar
  42. [42]
    L. Lewin, Polylogarithms and associated functions, North Holland, The Netherlands (1981).MATHGoogle Scholar
  43. [43]
    E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun. 188 (2014) 148 [arXiv:1403.3385] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Devoto and D.W. Duke, Table of integrals and formulae for Feynman diagram calculations, Riv. Nuovo Cim. 7N6 (1984) 1 [INSPIRE].
  45. [45]
    U.D. Jentschura, P.J. Mohr, G. Soff and E.J. Weniger, Convergence acceleration via combined nonlinear-condensation transformations, Comput. Phys. Commun. 116 (1999) 28 [math/9809111].
  46. [46]
    E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, math/0306302.
  47. [47]
    R. Borghi and E.J. Weniger, Convergence analysis of the summation of the Euler series by Padé approximants and the delta transformation, arXiv:1405.2474.
  48. [48]
    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].
  49. [49]
    T. Huber and D. Maître, HypExp: a mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [INSPIRE].
  50. [50]
    M. Yu. Kalmykov, B.F.L. Ward and S.A. Yost, On the all-order ϵ-expansion of generalized hypergeometric functions with integer values of parameters, JHEP 11 (2007) 009 [arXiv:0708.0803] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    Z.-W. Huang and J. Liu, NumExp: numerical ϵ-expansion of hypergeometric functions, Comput. Phys. Commun. 184 (2013) 1973 [arXiv:1209.3971] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    V.V. Bytev, M. Yu. Kalmykov and S.-O. Moch, HYPERgeometric functions DIfferential REduction (HYPERDIRE): mathematica based packages for differential reduction of generalized hypergeometric functions: F D and F S Horn-type hypergeometric functions of three variables, Comput. Phys. Commun. 185 (2014) 3041 [arXiv:1312.5777] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    C.G. Papadopoulos, Simplified differential equations approach for master integrals, JHEP 07 (2014) 088 [arXiv:1401.6057] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  55. [55]
    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Hjalte Frellesvig
    • 1
  • Damiano Tommasini
    • 1
  • Christopher Wever
    • 1
    • 2
    • 3
  1. 1.Institute of Nuclear and Particle Physics, NCSR “Demokritos”Agia ParaskeviGreece
  2. 2.Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Institute for Nuclear Physics (IKP), Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations