On the reduction of generalized polylogarithms to Li n and Li2,2 and on the evaluation thereof

  • Hjalte Frellesvig
  • Damiano Tommasini
  • Christopher Wever
Open Access
Regular Article - Theoretical Physics


We give expressions for all generalized polylogarithms up to weight four in terms of the functions log, Li n , and Li2,2, valid for arbitrary complex variables. Furthermore we provide algorithms for manipulation and numerical evaluation of Li n and Li2,2, and add codes in Mathematica and C++ implementing the results. With these results we calculate a number of previously unknown integrals, which we add in appendix C.


NLO Computations 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material (808 kb)
ESM 1 (ZIP 808 kb)


  1. [1]
    E.E. Kummer, Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen (in German), J. Reine Angew. Math. 21 (1840) 74.MathSciNetCrossRefGoogle Scholar
  2. [2]
    H. Poincaré, Sur les groupes des équations linéaires (in French), Acta Math. 4 (1883) 215.Google Scholar
  3. [3]
    K.-T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  8. [8]
    T. Gehrmann and E. Remiddi, Two loop master integrals for γ → 3 jets: the planar topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].
  9. [9]
    U. Aglietti and R. Bonciani, Master integrals with 2 and 3 massive propagators for the 2 loop electroweak form-factorplanar case, Nucl. Phys. B 698 (2004) 277 [hep-ph/0401193] [INSPIRE].
  10. [10]
    J.G. Korner, Z. Merebashvili and M. Rogal, Laurent series expansion of a class of massive scalar one-loop integrals up to \( \mathcal{O}\left({\varepsilon}^2\right) \) in terms of multiple polylogarithms, J. Math. Phys. 47 (2006) 072302 [hep-ph/0512159] [INSPIRE].
  11. [11]
    R. Bonciani, G. Degrassi and A. Vicini, On the generalized harmonic polylogarithms of one complex variable, Comput. Phys. Commun. 182 (2011) 1253 [arXiv:1007.1891] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J. Ablinger, J. Blumlein and C. Schneider, Harmonic sums and polylogarithms generated by cyclotomic polynomials, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, JHEP 05 (2014) 090 [arXiv:1402.7078] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Caola, J.M. Henn, K. Melnikov and V.A. Smirnov, Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons, JHEP 09 (2014) 043 [arXiv:1404.5590] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C.G. Papadopoulos, D. Tommasini and C. Wever, Two-loop master integrals with the simplified differential equations approach, JHEP 01 (2015) 072 [arXiv:1409.6114] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function F 2(x, Q 2) and the anomalous dimension, Nucl. Phys. B 890 (2014) 48 [arXiv:1409.1135] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  17. [17]
    T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [arXiv:1511.05409] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C.G. Papadopoulos, D. Tommasini and C. Wever, The pentabox master integrals with the simplified differential equations approach, arXiv:1511.09404 [INSPIRE].
  19. [19]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Duhr, Mathematical aspects of scattering amplitudes, in Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014), Boulder CO U.S.A. June 2-27 2014 [arXiv:1411.7538] [INSPIRE].
  21. [21]
    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  22. [22]
    S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys. B 704 (2005) 349 [hep-ph/0406160] [INSPIRE].
  23. [23]
    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph with arbitrary masses, J. Math. Phys. 54 (2013) 052303 [arXiv:1302.7004] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    S. Bloch and P. Vanhove, The elliptic dilogarithm for the sunset graph, arXiv:1309.5865 [INSPIRE].
  25. [25]
    L. Adams, C. Bogner and S. Weinzierl, The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms, J. Math. Phys. 55 (2014) 102301 [arXiv:1405.5640] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    L. Adams, C. Bogner and S. Weinzierl, The iterated structure of the all-order result for the two-loop sunrise integral, arXiv:1512.05630 [INSPIRE].
  27. [27]
    S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. von Manteuffel and C. Studerus, Massive planar and non-planar double box integrals for light N f contributions to ggtt, JHEP 10 (2013) 037 [arXiv:1306.3504] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    T. Gehrmann, A. von Manteuffel and L. Tancredi, The two-loop helicity amplitudes for \( q\overline{q} \) V 1 V 2 → 4 leptons, JHEP 09 (2015) 128 [arXiv:1503.04812] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Bonciani, A. Ferroglia, T. Gehrmann, A. von Manteuffel and C. Studerus, Light-quark two-loop corrections to heavy-quark pair production in the gluon fusion channel, JHEP 12 (2013) 038 [arXiv:1309.4450] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello and V.A. Smirnov, Next-to-leading order QCD corrections to the decay width HZγ, JHEP 08 (2015) 108 [arXiv:1505.00567] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Gehrmann, S. Guns and D. Kara, The rare decay HZγ in perturbative QCD, JHEP 09 (2015) 038 [arXiv:1505.00561] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  35. [35]
    T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun. 144 (2002) 200 [hep-ph/0111255] [INSPIRE].
  36. [36]
    R.E. Crandall, Note on fast polylogarithm computation, (2006).Google Scholar
  37. [37]
    J.M. Borwein, D.M. Bradley, D.J. Broadhurst and P. Lisonek, Special values of multiple polylogarithms, Trans. Amer. Math. Soc. 353 (2001) 907 [math/9910045] [INSPIRE].
  38. [38]
    M.E. Hoffman, Algebraic aspects of multiple zeta values, math/0309425.
  39. [39]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    J. Ablinger, J. Blümlein and C. Schneider, Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    B.S. Institution, The C standard: incorporating technical corrigendum 1, BS ISO/IEC 9899/1999, John Wiley, U.S.A. (2003).Google Scholar
  42. [42]
    L. Lewin, Polylogarithms and associated functions, North Holland, The Netherlands (1981).zbMATHGoogle Scholar
  43. [43]
    E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun. 188 (2014) 148 [arXiv:1403.3385] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Devoto and D.W. Duke, Table of integrals and formulae for Feynman diagram calculations, Riv. Nuovo Cim. 7N6 (1984) 1 [INSPIRE].
  45. [45]
    U.D. Jentschura, P.J. Mohr, G. Soff and E.J. Weniger, Convergence acceleration via combined nonlinear-condensation transformations, Comput. Phys. Commun. 116 (1999) 28 [math/9809111].
  46. [46]
    E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, math/0306302.
  47. [47]
    R. Borghi and E.J. Weniger, Convergence analysis of the summation of the Euler series by Padé approximants and the delta transformation, arXiv:1405.2474.
  48. [48]
    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].
  49. [49]
    T. Huber and D. Maître, HypExp: a mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [INSPIRE].
  50. [50]
    M. Yu. Kalmykov, B.F.L. Ward and S.A. Yost, On the all-order ϵ-expansion of generalized hypergeometric functions with integer values of parameters, JHEP 11 (2007) 009 [arXiv:0708.0803] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    Z.-W. Huang and J. Liu, NumExp: numerical ϵ-expansion of hypergeometric functions, Comput. Phys. Commun. 184 (2013) 1973 [arXiv:1209.3971] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    V.V. Bytev, M. Yu. Kalmykov and S.-O. Moch, HYPERgeometric functions DIfferential REduction (HYPERDIRE): mathematica based packages for differential reduction of generalized hypergeometric functions: F D and F S Horn-type hypergeometric functions of three variables, Comput. Phys. Commun. 185 (2014) 3041 [arXiv:1312.5777] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    C.G. Papadopoulos, Simplified differential equations approach for master integrals, JHEP 07 (2014) 088 [arXiv:1401.6057] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  55. [55]
    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Hjalte Frellesvig
    • 1
  • Damiano Tommasini
    • 1
  • Christopher Wever
    • 1
    • 2
    • 3
  1. 1.Institute of Nuclear and Particle Physics, NCSR “Demokritos”Agia ParaskeviGreece
  2. 2.Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Institute for Nuclear Physics (IKP), Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations