Pseudoscalar susceptibilities and quark condensates: chiral restoration and lattice screening masses

Open Access
Regular Article - Theoretical Physics

Abstract

We derive the formal Ward identities relating pseudoscalar susceptibilities and quark condensates in three-flavor QCD, including consistently the η-η′ sector and the UA(1) anomaly. These identities are verified in the low-energy realization provided by ChPT, both in the standard SU(3) framework for the octet case and combining the use of the U(3) framework and the large-Nc expansion of QCD to account properly for the nonet sector and anomalous contributions. The analysis is performed including finite temperature corrections as well as the calculation of U(3) quark condensates and all pseudoscalar susceptibilities, which together with the full set of Ward identities, are new results of this work. Finally, the Ward identities are used to derive scaling relations for pseudoscalar masses which explain the behavior with temperature of lattice screening masses near chiral symmetry restoration.

Keywords

Chiral Lagrangians Global Symmetries Phase Diagram of QCD Lattice QCD 

References

  1. [1]
    Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II., JHEP 06 (2009) 088 [arXiv:0903.4155] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].
  3. [3]
    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M.I. Buchoff et al., QCD chiral transition, U(1)A symmetry and the Dirac spectrum using domain wall fermions, Phys. Rev. D 89 (2014) 054514 [arXiv:1309.4149] [INSPIRE].ADSGoogle Scholar
  5. [5]
    T. Bhattacharya et al., QCD Phase Transition with Chiral Quarks and Physical Quark Masses, Phys. Rev. Lett. 113 (2014) 082001 [arXiv:1402.5175] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    JLQCD collaboration, G. Cossu, H. Fukaya, S. Hashimoto, J.-i. Noaki and A. Tomiya, On the axial U(1) symmetry at finite temperature, arXiv:1511.05691 [INSPIRE].
  7. [7]
    R.D. Pisarski and F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics, Phys. Rev. D 29 (1984) 338 [INSPIRE].ADSGoogle Scholar
  8. [8]
    P. Huovinen and P. Petreczky, QCD Equation of State and Hadron Resonance Gas, Nucl. Phys. A 837 (2010) 26 [arXiv:0912.2541] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Rapp and J. Wambach, Chiral symmetry restoration and dileptons in relativistic heavy ion collisions, Adv. Nucl. Phys. 25 (2000) 1 [hep-ph/9909229] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Gasser and H. Leutwyler, Light Quarks at Low Temperatures, Phys. Lett. B 184 (1987) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Gerber and H. Leutwyler, Hadrons Below the Chiral Phase Transition, Nucl. Phys. B 321 (1989) 387 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Schenk, Pion propagation at finite temperature, Phys. Rev. D 47 (1993) 5138 [INSPIRE].ADSGoogle Scholar
  15. [15]
    D. Fernandez-Fraile and A. Gómez Nicola, Transport coefficients and resonances for a meson gas in Chiral Perturbation Theory, Eur. Phys. J. C 62 (2009) 37 [arXiv:0902.4829] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Gómez Nicola, J. Ruiz de Elvira and R. Torres Andres, Chiral Symmetry Restoration and Scalar-Pseudoscalar partners in QCD, Phys. Rev. D 88 (2013) 076007 [arXiv:1304.3356] [INSPIRE].ADSGoogle Scholar
  17. [17]
    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
  18. [18]
    E. Witten, Baryons in the 1/n Expansion, Nucl. Phys. B 160 (1979) 57 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Rosenzweig, J. Schechter and C.G. Trahern, Is the Effective Lagrangian for QCD a σ-model?, Phys. Rev. D 21 (1980) 3388 [INSPIRE].ADSGoogle Scholar
  20. [20]
    E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    S.R. Coleman and E. Witten, Chiral Symmetry Breakdown in Large-N Chromodynamics, Phys. Rev. Lett. 45 (1980) 100 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    G. Veneziano, Goldstone Mechanism From Gluon Dynamics, Phys. Lett. B 95 (1980) 90 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Di Vecchia and G. Veneziano, Chiral Dynamics in the Large-N Limit, Nucl. Phys. B 171 (1980) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    E. Witten, Large-N Chiral Dynamics, Annals Phys. 128 (1980) 363 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Herrera-Siklody, J.I. Latorre, P. Pascual and J. Taron, Chiral effective Lagrangian in the large-N c limit: The Nonet case, Nucl. Phys. B 497 (1997) 345 [hep-ph/9610549] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Kaiser and H. Leutwyler, Large-N c in chiral perturbation theory, Eur. Phys. J. C 17 (2000) 623 [hep-ph/0007101] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    Z.-H. Guo and J.A. Oller, Resonances from meson-meson scattering in U(3) ChPT, Phys. Rev. D 84 (2011) 034005 [arXiv:1104.2849] [INSPIRE].ADSGoogle Scholar
  28. [28]
    Z.-H. Guo, J.A. Oller and J. Ruiz de Elvira, Chiral dynamics in U(3) unitary chiral perturbation theory, Phys. Lett. B 712 (2012) 407 [arXiv:1203.4381] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Z.-H. Guo, J.A. Oller and J. Ruiz de Elvira, Chiral dynamics in form factors, spectral-function sum rules, meson-meson scattering and semi-local duality, Phys. Rev. D 86 (2012) 054006 [arXiv:1206.4163] [INSPIRE].ADSGoogle Scholar
  30. [30]
    X.-K. Guo, Z.-H. Guo, J.A. Oller and J.J. Sanz-Cillero, Scrutinizing the η-ηmixing, masses and pseudoscalar decay constants in the framework of U(3) chiral effective field theory, JHEP 06 (2015) 175 [arXiv:1503.02248] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D.J. Broadhurst, A Strong Constraint on Chiral Symmetry Breaking at Short Distances, Nucl. Phys. B 85 (1975) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Bochicchio, L. Maiani, G. Martinelli, G.C. Rossi and M. Testa, Chiral Symmetry on the Lattice with Wilson Fermions, Nucl. Phys. B 262 (1985) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Z.-F. Cui, F.-Y. Hou, Y.-M. Shi, Y.-L. Wang and H.-S. Zong, Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD, Annals Phys. 358 (2015) 172 [arXiv:1505.00310] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  34. [34]
    K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev. D 21 (1980) 2848 [Erratum ibid. D 22 (1980) 1499] [INSPIRE].
  35. [35]
    A. Gómez Nicola, J.R. Peláez and J. Ruiz de Elvira, Non-factorization of four-quark condensates at low energies within Chiral Perturbation Theory, Phys. Rev. D 82 (2010) 074012 [arXiv:1005.4370] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Gómez Nicola, J.R. Peláez and J. Ruiz de Elvira, Scalar susceptibilities and four-quark condensates in the meson gas within Chiral Perturbation Theory, Phys. Rev. D 87 (2013) 016001 [arXiv:1210.7977] [INSPIRE].ADSGoogle Scholar
  37. [37]
    V. Furman and Y. Shamir, Axial symmetries in lattice QCD with Kaplan fermions, Nucl. Phys. B 439 (1995) 54 [hep-lat/9405004] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Blum et al., Quenched lattice QCD with domain wall fermions and the chiral limit, Phys. Rev. D 69 (2004) 074502 [hep-lat/0007038] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Cheng et al., Meson screening masses from lattice QCD with two light and the strange quark, Eur. Phys. J. C 71 (2011) 1564 [arXiv:1010.1216] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Y. Maezawa, A. Bazavov, F. Karsch, P. Petreczky and S. Mukherjee, Meson screening masses at finite temperature with Highly Improved Staggered Quarks, PoS(LATTICE 2013)149 [arXiv:1312.4375] [INSPIRE].
  41. [41]
    F. Karsch and E. Laermann, Thermodynamics and in medium hadron properties from lattice QCD, in Quark gluon plasma, R.C. Hwa ed., World Scientific (1990), pp. 1–57 [hep-lat/0305025] [INSPIRE].
  42. [42]
    M. Cheng et al., The QCD equation of state with almost physical quark masses, Phys. Rev. D 77 (2008) 014511 [arXiv:0710.0354] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Bazavov et al., Equation of state and QCD transition at finite temperature, Phys. Rev. D 80 (2009) 014504 [arXiv:0903.4379] [INSPIRE].ADSGoogle Scholar
  44. [44]
    MILC collaboration, A. Bazavov et al., Nonperturbative QCD simulations with 2 + 1 flavors of improved staggered quarks, Rev. Mod. Phys. 82 (2010) 1349 [arXiv:0903.3598] [INSPIRE].
  45. [45]
    G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Departamento de Física Teórica II, Facultad de Ciencias FísicasUniversidad Complutense de MadridMadridSpain
  2. 2.Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany

Personalised recommendations