Advertisement

The \( \mathcal{N}=2 \) superconformal bootstrap

  • Christopher Beem
  • Madalena Lemos
  • Pedro Liendo
  • Leonardo Rastelli
  • Balt C. van Rees
Open Access
Regular Article - Theoretical Physics

Abstract

In this work we initiate the conformal bootstrap program for \( \mathcal{N}=2 \) super-conformal field theories in four dimensions. We promote an abstract operator-algebraic viewpoint in order to unify the description of Lagrangian and non-Lagrangian theories, and formulate various conjectures concerning the landscape of theories. We analyze in detail the four-point functions of flavor symmetry current multiplets and of \( \mathcal{N}=2 \) chiral operators. For both correlation functions we review the solution of the superconformal Ward identities and describe their superconformal block decompositions. This provides the foundation for an extensive numerical analysis discussed in the second half of the paper. We find a large number of constraints for operator dimensions, OPE coefficients, and central charges that must hold for any \( \mathcal{N}=2 \) superconformal field theory.

Keywords

Conformal and W Symmetry Conformal Field Models in String Theory Extended Supersymmetry Supersymmetric gauge theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    S. Ferrara, A.F. Grillo and R. Gatto, Manifestly conformal-covariant expansion on the light cone, Phys. Rev. D 5 (1972) 3102 [INSPIRE].ADSGoogle Scholar
  3. [3]
    S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B 49 (1972) 77 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Ferrara, R. Gatto and A.F. Grillo, Positivity restrictions on anomalous dimensions, Phys. Rev. D 9 (1974) 3564 [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. Ferrara, A.F. Grillo, R. Gatto and G. Parisi, Analyticity properties and asymptotic expansions of conformal covariant Greens functions, Nuovo Cim. A 19 (1974) 667 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S. Ferrara, R. Gatto and A.F. Grillo, Properties of partial wave amplitudes in conformal invariant field theories, Nuovo Cim. A 26 (1975) 226 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [INSPIRE].MathSciNetGoogle Scholar
  9. [9]
    L. Bhardwaj and Y. Tachikawa, Classification of 4D N = 2 gauge theories, JHEP 12 (2013) 100 [arXiv:1309.5160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
  12. [12]
    S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSGoogle Scholar
  13. [13]
    S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].
  14. [14]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N.J. Hitchin, A. Karlhede, U. Lindstrom and M. Rocek, Hyperkahler metrics and supersymmetry, Commun. Math. Phys. 108 (1987) 535.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    D. Xie, General Argyres-Douglas theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. Buican, S. Giacomelli, T. Nishinaka and C. Papageorgakis, Argyres-Douglas theories and S-duality, JHEP 02 (2015) 185 [arXiv:1411.6026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    S. Rychkov, EPFL lectures on conformal field theory in D ≥ 3 dimensions, https://sites.google.com/site/slavarychkov/home, (Dec., 2012).
  21. [21]
    D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE convergence in conformal field theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  23. [23]
    V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in D = 4, arXiv:1307.8092 [INSPIRE].
  24. [24]
    J.L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    A. Dymarsky, On the four-point function of the stress-energy tensors in a CFT, JHEP 10 (2015) 075 [arXiv:1311.4546] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Kulaxizi and A. Parnachev, Energy flux positivity and unitarity in CFTs, Phys. Rev. Lett. 106 (2011) 011601 [arXiv:1007.0553] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. Zhiboedov, On conformal field theories with extremal a/c values, JHEP 04 (2014) 038 [arXiv:1304.6075] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Erdmenger and H. Osborn, Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    D. Anselmi, Central functions and their physical implications, JHEP 05 (1998) 005 [hep-th/9702056] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    A. Vichi, Anomalous dimensions of scalar operators in CFT, Nucl. Phys. Proc. Suppl. 192-193 (2009) 197.MathSciNetCrossRefGoogle Scholar
  34. [34]
    F. Caracciolo and V.S. Rychkov, Rigorous limits on the interaction strength in quantum field theory, Phys. Rev. D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    R. Rattazzi, S. Rychkov and A. Vichi, Central charge bounds in 4D conformal field theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].ADSzbMATHGoogle Scholar
  37. [37]
    R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  38. [38]
    A. Vichi, Improved bounds for CFTs with global symmetries, JHEP 01 (2012) 162 [arXiv:1106.4037] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  39. [39]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. El-Showk and M.F. Paulos, Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett. 111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    F. Gliozzi, More constraining conformal bootstrap, Phys. Rev. Lett. 111 (2013) 161602 [arXiv:1307.3111] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N ) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Conformal field theories in fractional dimensions, Phys. Rev. Lett. 112 (2014) 141601 [arXiv:1309.5089] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  46. [46]
    L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, JHEP 09 (2014) 144 [arXiv:1310.3757] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3D Ising twist defect, JHEP 03 (2014) 100 [arXiv:1310.5078] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Berkooz, R. Yacoby and A. Zait, Bounds on \( \mathcal{N}=1 \) superconformal theories with global symmetries, JHEP 08 (2014) 008 [Erratum ibid. 01 (2015) 132] [arXiv:1402.6068] [INSPIRE].
  49. [49]
    F. Gliozzi and A. Rago, Critical exponents of the 3D Ising and related models from Conformal Bootstrap, JHEP 10 (2014) 042 [arXiv:1403.6003] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Y. Nakayama and T. Ohtsuki, Approaching the conformal window of O(n) × O(m) symmetric Landau-Ginzburg models using the conformal bootstrap, Phys. Rev. D 89 (2014) 126009 [arXiv:1404.0489] [INSPIRE].ADSGoogle Scholar
  51. [51]
    Y. Nakayama and T. Ohtsuki, Five dimensional O(N )-symmetric CFTs from conformal bootstrap, Phys. Lett. B 734 (2014) 193 [arXiv:1404.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    L.F. Alday and A. Bissi, Generalized bootstrap equations for \( \mathcal{N}=4 \) SCFT, JHEP 02 (2015) 101 [arXiv:1404.5864] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The \( \mathcal{N}=8 \) superconformal bootstrap in three dimensions, JHEP 09 (2014) 143 [arXiv:1406.4814] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    F. Caracciolo, A.C. Echeverri, B. von Harling and M. Serone, Bounds on OPE coefficients in 4D conformal field theories, JHEP 10 (2014) 20 [arXiv:1406.7845] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    M.F. Paulos, JuliBootS: a hands-on guide to the conformal bootstrap, arXiv:1412.4127 [INSPIRE].
  56. [56]
    J.-B. Bae and S.-J. Rey, Conformal bootstrap approach to O(N ) fixed points in five dimensions, arXiv:1412.6549 [INSPIRE].
  57. [57]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].
  59. [59]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal blocks, JHEP 11 (2011) 154 [arXiv:1109.6321] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  60. [60]
    D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    W. Siegel, Embedding versus 6D twistors, arXiv:1204.5679 [INSPIRE].
  62. [62]
    H. Osborn, Conformal blocks for arbitrary spins in two dimensions, Phys. Lett. B 718 (2012) 169 [arXiv:1205.1941] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    M. Hogervorst and S. Rychkov, Radial coordinates for conformal blocks, Phys. Rev. D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].ADSGoogle Scholar
  64. [64]
    A.L. Fitzpatrick, J. Kaplan and D. Poland, Conformal blocks in the large D limit, JHEP 08 (2013) 107 [arXiv:1305.0004] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    M. Hogervorst, H. Osborn and S. Rychkov, Diagonal limit for conformal blocks in D dimensions, JHEP 08 (2013) 014 [arXiv:1305.1321] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    A.L. Fitzpatrick, J. Kaplan, Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, Covariant approaches to superconformal blocks, JHEP 08 (2014) 129 [arXiv:1402.1167] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, \( \mathcal{N}=1 \) superconformal blocks for general scalar operators, JHEP 08 (2014) 049 [arXiv:1404.5300] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    E. Elkhidir, D. Karateev and M. Serone, General three-point functions in 4D CFT, JHEP 01 (2015) 133 [arXiv:1412.1796] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M.S. Costa and T. Hansen, Conformal correlators of mixed-symmetry tensors, JHEP 02 (2015) 151 [arXiv:1411.7351] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  73. [73]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    G. Vos, Generalized additivity in unitary conformal field theories, Nucl. Phys. B 899 (2015) 91 [arXiv:1411.7941] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  75. [75]
    V.K. Dobrev and V.B. Petkova, All positive energy unitary irreducible representations of extended conformal supersymmetry, Phys. Lett. B 162 (1985) 127 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  77. [77]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    M. Buican, T. Nishinaka and C. Papageorgakis, Constraints on chiral operators in \( \mathcal{N}=2 \) SCFTs, JHEP 12 (2014) 095 [arXiv:1407.2835] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S.M. Kuzenko and S. Theisen, Correlation functions of conserved currents in N = 2 superconformal theory, Class. Quant. Grav. 17 (2000) 665 [hep-th/9907107] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  80. [80]
    Y. Tachikawa, N = 2 supersymmetric dynamics for pedestrians, Lect. Notes Phys. 890 (2013) 2014 [arXiv:1312.2684] [INSPIRE].MathSciNetGoogle Scholar
  81. [81]
    S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d correspondences, arXiv:1006.3435 [INSPIRE].
  82. [82]
    A.D. Shapere and Y. Tachikawa, Central charges of N = 2 superconformal field theories in four dimensions, JHEP 09 (2008) 109 [arXiv:0804.1957] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  83. [83]
    M. Buican and T. Nishinaka, Compact conformal manifolds, JHEP 01 (2015) 112 [arXiv:1410.3006] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite chiral symmetry in four dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. [85]
    C. Beem, W. Peelaers, L. Rastelli and B.C. van Rees, Chiral algebras of class S, JHEP 05 (2015) 020 [arXiv:1408.6522] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  86. [86]
    M. Lemos and W. Peelaers, Chiral algebras for trinion theories, JHEP 02 (2015) 113 [arXiv:1411.3252] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  87. [87]
    A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  88. [88]
    T. Banks, M.R. Douglas and N. Seiberg, Probing F-theory with branes, Phys. Lett. B 387 (1996) 278 [hep-th/9605199] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    K. Dasgupta and S. Mukhi, F theory at constant coupling, Phys. Lett. B 385 (1996) 125 [hep-th/9606044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  90. [90]
    J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E 6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  91. [91]
    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E(n) global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  92. [92]
    O. Aharony, A. Fayyazuddin and J.M. Maldacena, The large-N limit of N = 2, N = 1 field theories from three-branes in F-theory, JHEP 07 (1998) 013 [hep-th/9806159] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  93. [93]
    G. Bonelli, K. Maruyoshi and A. Tanzini, Wild quiver gauge theories, JHEP 02 (2012) 031 [arXiv:1112.1691] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. [94]
    D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories, I, JHEP 12 (2012) 050 [arXiv:1203.1052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  95. [95]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  96. [96]
    P.C. Argyres and J.R. Wittig, Infinite coupling duals of N = 2 gauge theories and new rank 1 superconformal field theories, JHEP 01 (2008) 074 [arXiv:0712.2028] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    O. Chacaltana, J. Distler and Y. Tachikawa, Gaiotto duality for the twisted A 2N −1 series, JHEP 05 (2015) 075 [arXiv:1212.3952] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  98. [98]
    O. Chacaltana and J. Distler, Tinkertoys for the D N series, JHEP 02 (2013) 110 [arXiv:1106.5410] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    P.C. Argyres and J. Wittig, Mass deformations of four-dimensional, rank 1, N = 2 superconformal field theories, J. Phys. Conf. Ser. 462 (2013) 012001 [arXiv:1007.5026] [INSPIRE].CrossRefGoogle Scholar
  100. [100]
    P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of N = 2 SCFTs I: physical constraints on relevant deformations, arXiv:1505.04814 [INSPIRE].
  101. [101]
    P.C. Argyres, M. Crescimanno, A.D. Shapere and J.R. Wittig, Classification of N = 2 superconformal field theories with two-dimensional Coulomb branches, hep-th/0504070 [INSPIRE].
  102. [102]
    P.C. Argyres and J.R. Wittig, Classification of N = 2 superconformal field theories with two-dimensional Coulomb branches. II., hep-th/0510226 [INSPIRE].
  103. [103]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  104. [104]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  105. [105]
    P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of N =2 SCFTs II: construction of special Kähler geometries and RG flows, arXiv:1601.00011 [INSPIRE].
  106. [106]
    O. Chacaltana, J. Distler and A. Trimm, Tinkertoys for the Z3-twisted D4 theory, arXiv:1601.02077 [INSPIRE].
  107. [107]
    P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Expanding the landscape of \( \mathcal{N}=2 \) rank 1 SCFTs, arXiv:1602.02764 [INSPIRE].
  108. [108]
    Y.-K.E. Cheung, O.J. Ganor and M. Krogh, Correlators of the global symmetry currents of 4D and 6D superconformal theories, Nucl. Phys. B 523 (1998) 171 [hep-th/9710053] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  109. [109]
    O. Aharony and Y. Tachikawa, A holographic computation of the central charges of D = 4, N =2 SCFTs, JHEP 01 (2008) 037 [arXiv:0711.4532] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  110. [110]
    F.A. Dolan and H. Osborn, Superconformal symmetry, correlation functions and the operator product expansion, Nucl. Phys. B 629 (2002) 3 [hep-th/0112251] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  111. [111]
    M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl. Phys. B 711 (2005) 409 [hep-th/0407060] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  112. [112]
    F.A. Dolan, L. Gallot and E. Sokatchev, On four-point functions of 1/2-BPS operators in general dimensions, JHEP 09 (2004) 056 [hep-th/0405180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  113. [113]
    P. Cvitanovic, Group theory: birdtracks, Lies and exceptional groups, Princeton University Press, Princeton, U.S.A. (2008).zbMATHCrossRefGoogle Scholar
  114. [114]
    C. Beem, L. Rastelli and B.C. van Rees, \( \mathcal{W} \) symmetry in six dimensions, JHEP 05 (2015) 017 [arXiv:1404.1079] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  115. [115]
    G. Arutyunov, B. Eden and E. Sokatchev, On nonrenormalization and OPE in superconformal field theories, Nucl. Phys. B 619 (2001) 359 [hep-th/0105254] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  116. [116]
    O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6D N = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  117. [117]
    M. Baggio, V. Niarchos and K. Papadodimas, Exact correlation functions in SU(2) \( \mathcal{N}=2 \) superconformal QCD, Phys. Rev. Lett. 113 (2014) 251601 [arXiv:1409.4217] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    M. Baggio, V. Niarchos and K. Papadodimas, tt equations, localization and exact chiral rings in 4D \( \mathcal{N}=2 \) SCFTs, JHEP 02 (2015) 122 [arXiv:1409.4212] [INSPIRE].
  119. [119]
    M. Baggio, J. de Boer and K. Papadodimas, A non-renormalization theorem for chiral primary 3-point functions, JHEP 07 (2012) 137 [arXiv:1203.1036] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  120. [120]
    K. Fujisawa et al., Sdpa (semidefinite programming algorithm) users manualVersion 7.0.5, technical report (2008).Google Scholar
  121. [121]
  122. [122]
    M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th Dover printing, Dover, New York (1964).Google Scholar
  123. [123]
    E. Gerchkovitz, J. Gomis and Z. Komargodski, Sphere Partition Functions and the Zamolodchikov Metric, JHEP 11 (2014) 001 [arXiv:1405.7271] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  124. [124]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  125. [125]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  126. [126]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.MathSciNetCrossRefGoogle Scholar
  127. [127]
    N. Dorey, V.V. Khoze and M.P. Mattis, Multi-instanton calculus in N = 2 supersymmetric gauge theory, Phys. Rev. D 54 (1996) 2921 [hep-th/9603136] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Christopher Beem
    • 1
  • Madalena Lemos
    • 2
  • Pedro Liendo
    • 3
  • Leonardo Rastelli
    • 2
  • Balt C. van Rees
    • 4
  1. 1.Institute for Advanced StudyPrincetonU.S.A.
  2. 2.C. N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.
  3. 3.IMIP, Humboldt-Universität zu Berlin, IRIS AdlershofBerlinGermany
  4. 4.Theory Group, Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations