New modes from higher curvature corrections in holography

  • Steffen Aksteiner
  • Yegor KorovinEmail author
Open Access
Regular Article - Theoretical Physics


In gravitational theories involving higher curvature corrections the metric describes additional degrees of freedom beyond the graviton. Holographic duality maps these to operators in the dual CFT. We identify infinite families of theories for which these new modes cannot be truncated and the usual Fefferman-Graham expansion needs to be modified. New massive gravity in three dimensions and critical gravity in four dimensions are particular representatives of these families. We propose modified expansion, study the near-boundary behaviour of the metric and derive fall-off properties of the additional modes in theories involving higher derivative corrections.


AdS-CFT Correspondence Classical Theories of Gravity Gauge-gravity correspondence Models of Quantum Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    K.S. Stelle, Classical Gravity with Higher Derivatives, Gen. Rel. Grav. 9 (1978) 353 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Papallo and H.S. Reall, Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory, JHEP 11 (2015) 109 [arXiv:1508.05303] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Deser, H. Liu, H. Lü, C.N. Pope, T.C. Sisman and B. Tekin, Critical Points of D-Dimensional Extended Gravities, Phys. Rev. D 83 (2011) 061502 [arXiv:1101.4009] [INSPIRE].ADSGoogle Scholar
  7. [7]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, More on Massive 3D Gravity, Phys. Rev. D 79 (2009) 124042 [arXiv:0905.1259] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    H. Lü and C.N. Pope, Critical Gravity in Four Dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Grumiller, W. Riedler, J. Rosseel and T. Zojer, Holographic applications of logarithmic conformal field theories, J. Phys. A 46 (2013) 494002 [arXiv:1302.0280] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  10. [10]
    C. Garraffo and G. Giribet, The Lovelock Black Holes, Mod. Phys. Lett. A 23 (2008) 1801 [arXiv:0805.3575] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    H. Lü, A. Perkins, C.N. Pope and K.S. Stelle, Black Holes in Higher-Derivative Gravity, Phys. Rev. Lett. 114 (2015) 171601 [arXiv:1502.01028] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    H. Lü, A. Perkins, C.N. Pope and K.S. Stelle, Spherically Symmetric Solutions in Higher-Derivative Gravity, Phys. Rev. D 92 (2015) 124019 [arXiv:1508.00010] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Adams, A. Maloney, A. Sinha and S.E. Vazquez, 1/N Effects in Non-Relativistic Gauge-Gravity Duality, JHEP 03 (2009) 097 [arXiv:0812.0166] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    E. Ayon-Beato, G. Giribet and M. Hassaine, Deeper discussion of Schrödinger invariant and Logarithmic sectors of higher-curvature gravity, Phys. Rev. D 83 (2011) 104033 [arXiv:1103.0742] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Maloney, W. Song and A. Strominger, Chiral Gravity, Log Gravity and Extremal CFT, Phys. Rev. D 81 (2010) 064007 [arXiv:0903.4573] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically Massive Gravity and the AdS/CFT Correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    J. Smolic and M. Taylor, Higher derivative effects for 4d AdS gravity, JHEP 06 (2013) 096 [arXiv:1301.5205] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Grumiller, M. Irakleidou, I. Lovrekovic and R. McNees, Conformal gravity holography in four dimensions, Phys. Rev. Lett. 112 (2014) 111102 [arXiv:1310.0819] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L. Álvarez-Gaumé, A. Kehagias, C. Kounnas, D. Lüst and A. Riotto, Aspects of Quadratic Gravity, Fortsch. Phys. 64 (2016) 176 [arXiv:1505.07657] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    C. Cunliff, Non-Fefferman-Graham asymptotics and holographic renormalization in New Massive Gravity, JHEP 04 (2013) 141 [arXiv:1301.1347] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S. Nojiri and S.D. Odintsov, On the conformal anomaly from higher derivative gravity in AdS/CFT correspondence, Int. J. Mod. Phys. A 15 (2000) 413 [hep-th/9903033] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    M. Blau, K.S. Narain and E. Gava, On subleading contributions to the AdS/CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    K. Sen and A. Sinha, Holographic stress tensor at finite coupling, JHEP 07 (2014) 098 [arXiv:1405.7862] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Deser and R.I. Nepomechie, Gauge Invariance Versus Masslessness in de Sitter Space, Annals Phys. 154 (1984) 396 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    D. Grumiller, N. Johansson and T. Zojer, Short-cut to new anomalies in gravity duals to logarithmic conformal field theories, JHEP 01 (2011) 090 [arXiv:1010.4449] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    M. Blagojevic and B. Cvetkovic, Extra gauge symmetries in BHT gravity, JHEP 03 (2011) 139 [arXiv:1103.2388] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    O. Hohm, A. Routh, P.K. Townsend and B. Zhang, On the Hamiltonian form of 3D massive gravity, Phys. Rev. D 86 (2012) 084035 [arXiv:1208.0038] [INSPIRE].ADSGoogle Scholar
  32. [32]
    L. Dolan, C.R. Nappi and E. Witten, Conformal operators for partially massless states, JHEP 10 (2001) 016 [hep-th/0109096] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    E. Joung, W. Li and M. Taronna, No-Go Theorems for Unitary and Interacting Partially Massless Spin-Two Fields, Phys. Rev. Lett. 113 (2014) 091101 [arXiv:1406.2335] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Schwimmer and S. Theisen, Universal features of holographic anomalies, JHEP 10 (2003) 001 [hep-th/0309064] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    J.T. Wheeler, Symmetric Solutions to the Maximally Gauss-Bonnet Extended Einstein Equations, Nucl. Phys. B 273 (1986) 732 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    C. Charmousis and J.-F. Dufaux, General Gauss-Bonnet brane cosmology, Class. Quant. Grav. 19 (2002) 4671 [hep-th/0202107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    M. Bañados, L.J. Garay and M. Henneaux, The Local degrees of freedom of higher dimensional pure Chern-Simons theories, Phys. Rev. D 53 (1996) 593 [hep-th/9506187] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  38. [38]
    M. Bañados, L.J. Garay and M. Henneaux, The dynamical structure of higher dimensional Chern-Simons theory, Nucl. Phys. B 476 (1996) 611 [hep-th/9605159] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    O. Mišković, R. Troncoso and J. Zanelli, Canonical sectors of five-dimensional Chern-Simons theories, Phys. Lett. B 615 (2005) 277 [hep-th/0504055] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    A.H. Chamseddine, Topological gravity and supergravity in various dimensions, Nucl. Phys. B 346 (1990) 213 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    M. Alishahiha and A. Naseh, Holographic renormalization of new massive gravity, Phys. Rev. D 82 (2010) 104043 [arXiv:1005.1544] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    N. Johansson, A. Naseh and T. Zojer, Holographic two-point functions for 4d log-gravity, JHEP 09 (2012) 114 [arXiv:1205.5804] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    A. Ghodsi, B. Khavari and A. Naseh, Holographic Two-Point Functions in Conformal Gravity, JHEP 01 (2015) 137 [arXiv:1411.3158] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    J.M. Martın-García, xAct: Efficient tensor computer algebra for Mathematica, 2002-2014,

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutGolmGermany

Personalised recommendations