Interactions as intertwiners in 4D QFT

Open Access
Regular Article - Theoretical Physics

Abstract

In a recent paper we showed that the correlators of free scalar field theory in four dimensions can be constructed from a two dimensional topological field theory based on so(4, 2) equivariant maps (intertwiners). The free field result, along with recent results of Frenkel and Libine on equivariance properties of Feynman integrals, are developed further in this paper. We show that the coefficient of the log term in the 1-loop 4-point conformal integral is a projector in the tensor product of so(4, 2) representations. We also show that the 1-loop 4-point integral can be written as a sum of four terms, each associated with the quantum equation of motion for one of the four external legs. The quantum equation of motion is shown to be related to equivariant maps involving indecomposable representations of so(4, 2), a phenomenon which illuminates multiplet recombination. The harmonic expansion method for Feynman integrals is a powerful tool for arriving at these results. The generalization to other interactions and higher loops is discussed.

Keywords

AdS-CFT Correspondence Conformal and W Symmetry Duality in Gauge Field Theories Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. de Mello Koch and S. Ramgoolam, Strings from Feynman Graph counting: without large-N , Phys. Rev. D 85 (2012) 026007 [arXiv:1110.4858] [INSPIRE].ADSGoogle Scholar
  2. [2]
    R. de Mello Koch, S. Ramgoolam and C. Wen, On the refined counting of graphs on surfaces, Nucl. Phys. B 870 (2013) 530 [arXiv:1209.0334] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    J. Pasukonis and S. Ramgoolam, Quivers as Calculators: Counting, Correlators and Riemann Surfaces, JHEP 04 (2013) 094 [arXiv:1301.1980] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    Y. Kimura, Multi-matrix models and Noncommutative Frobenius algebras obtained from symmetric groups and Brauer algebras, Commun. Math. Phys. 337 (2015) 1 [arXiv:1403.6572] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    V. Jejjala, S. Ramgoolam and D. Rodriguez-Gomez, Toric CFTs, Permutation Triples and Belyi Pairs, JHEP 03 (2011) 065 [arXiv:1012.2351] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    T.W. Brown, Complex matrix model duality, Phys. Rev. D 83 (2011) 085002 [arXiv:1009.0674] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N =4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant Graviton Oscillators, JHEP 10 (2011) 009 [arXiv:1108.2761] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in AdS/CFT, JHEP 06 (2012) 083 [arXiv:1204.2153] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Ben Geloun and S. Ramgoolam, Counting Tensor Model Observables and Branched Covers of the 2-Sphere, arXiv:1307.6490 [INSPIRE].
  11. [11]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    N. Beisert, C. Kristjansen and M. Staudacher, The Dilatation operator of conformal N = 4 super Yang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    R. de Mello Koch and S. Ramgoolam, CFT 4 as so(4, 2)-invariant TFT 2, Nucl. Phys. B 890 (2014) 302 [arXiv:1403.6646] [INSPIRE].MathSciNetMATHGoogle Scholar
  14. [14]
    M. Atiyah, Topological quantum field theory, Publ. Math. I.H.E.S. 68 (1988) 175.Google Scholar
  15. [15]
    G.W. Moore and G. Segal, D-branes and k-theory in 2D topological field theory, hep-th/0609042 [INSPIRE].
  16. [16]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Y. Kazama, S. Komatsu and T. Nishimura, Novel construction and the monodromy relation for three-point functions at weak coupling, JHEP 01 (2015) 095 [Erratum ibid. 1508 (2015) 145] [arXiv:1410.8533] [INSPIRE].
  20. [20]
    Y. Jiang, I. Kostov, A. Petrovskii and D. Serban, String Bits and the Spin Vertex, Nucl. Phys. B 897 (2015) 374 [arXiv:1410.8860] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    B. Basso, S. Komatsu and P. Vieira, Structure Constants and Integrable Bootstrap in Planar N =4 SYM Theory, arXiv:1505.06745[INSPIRE].
  22. [22]
    L.F. Alday, J.R. David, E. Gava and K.S. Narain, Towards a string bit formulation of N = 4 super Yang-Mills, JHEP 04 (2006) 014 [hep-th/0510264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    L. Freidel, R.G. Leigh and D. Minic, Quantum Gravity, Dynamical Phase Space and String Theory, Int. J. Mod. Phys. D 23 (2014) 1442006 [arXiv:1405.3949] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L. Freidel, R.G. Leigh and D. Minic, Metastring Theory and Modular Space-time, JHEP 06 (2015) 006 [arXiv:1502.08005] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    L.J. Dixon, A brief introduction to modern amplitude methods, arXiv:1310.5353 [INSPIRE].
  27. [27]
    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    I. Frenkel and M. Libine, Quaternionic Analysis, Representation Theory and Physics, arXiv:0711.2699 [INSPIRE].
  30. [30]
    N. Aizawa and V.K. Dobrev, Intertwining Operator Realization of anti de Sitter Holography, Rept. Math. Phys. 75 (2015) 179 [arXiv:1406.2129] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    F.A. Dolan and H. Osborn, Implications of N = 1 superconformal symmetry for chiral fields, Nucl. Phys. B 593 (2001) 599 [hep-th/0006098] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    D. Simmons-Duffin, Projectors, Shadows and Conformal Blocks, JHEP 04 (2014) 146 [arXiv:1204.3894] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    N.I. Usyukina and A.I. Davydychev, Exact results for three and four point ladder diagrams with an arbitrary number of rungs, Phys. Lett. B 305 (1993) 136 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    N.I. Usyukina and A.I. Davydychev, Some exact results for two loop diagrams with three and four external lines, Phys. Atom. Nucl. 56 (1993) 1553 [Yad. Fiz. 56N11 (1993) 172] [hep-ph/9307327] [INSPIRE].
  36. [36]
    S. Rychkov and Z.M. Tan, The ϵ-expansion from conformal field theory, J. Phys. A 48 (2015) 29FT01 [arXiv:1505.00963] [INSPIRE].
  37. [37]
    F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    M. Bianchi, P.J. Heslop and F. Riccioni, More on La Grande Bouffe, JHEP 08 (2005) 088 [hep-th/0504156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    M. Libine, The Two-Loop Ladder Diagram and Representations of U(2, 2), arXiv:1309.5665 [INSPIRE].
  41. [41]
    M. Libine, The Conformal Four-Point Integrals, Magic Identities and Representations of U(2, 2), arXiv:1407.2507 [INSPIRE].
  42. [42]
    A.V. Kotikov, The Gegenbauer polynomial technique: The Evaluation of a class of Feynman diagrams, Phys. Lett. B 375 (1996) 240 [hep-ph/9512270] [INSPIRE].
  43. [43]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    F. Cachazo, Sharpening The Leading Singularity, arXiv:0803.1988 [INSPIRE].
  45. [45]
    S. Abreu, R. Britto, C. Duhr and E. Gardi, From multiple unitarity cuts to the coproduct of Feynman integrals, JHEP 10 (2014) 125 [arXiv:1401.3546] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    M.R. Gaberdiel, Fusion rules and logarithmic representations of a WZW model at fractional level, Nucl. Phys. B 618 (2001) 407 [hep-th/0105046] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    R. Vasseur, J.L. Jacobsen and H. Saleur, Indecomposability parameters in chiral Logarithmic Conformal Field Theory, Nucl. Phys. B 851 (2011) 314 [arXiv:1103.3134] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    A.-L. Do and M. Flohr, Towards the construction of Local Logarithmic Conformal Field Theories, Nucl. Phys. B 802 (2008) 475 [arXiv:0710.1783] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303 [hep-th/0508031] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    W. Heidenreich, Tensor Products of Positive Energy Representations of SO(3, 2) and SO(4, 2), J. Math. Phys. 22 (1981) 1566 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    R. Doobary and P. Heslop, Superconformal partial waves in Grassmannian field theories, JHEP 12 (2015) 159 [arXiv:1508.03611] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Jevicki, Y. Kazama and T. Yoneya, Generalized conformal symmetry in D-brane matrix models, Phys. Rev. D 59 (1999) 066001 [hep-th/9810146] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    The On-Line Encyclopedia of Integer Sequences, available at http://oeis.org/.
  55. [55]

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.National Institute for Theoretical Physics, School of Physics and Mandelstam Institute for Theoretical PhysicsUniversity of WitwatersrandWitsSouth Africa
  2. 2.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonU.K.

Personalised recommendations