Advertisement

Revisiting R-invariant direct gauge mediation

  • Cheng-Wei Chiang
  • Keisuke Harigaya
  • Masahiro IbeEmail author
  • Tsutomu T. Yanagida
Open Access
Regular Article - Theoretical Physics

Abstract

We revisit a special model of gauge mediated supersymmetry breaking, the “R-invariant direct gauge mediation.” We pay particular attention to whether the model is consistent with the minimal model of the μ-term, i.e., a simple mass term of the Higgs doublets in the superpotential. Although the incompatibility is highlighted in view of the current experimental constraints on the superparticle masses and the observed Higgs boson mass, the minimal μ-term can be consistent with the R-invariant gauge mediation model via a careful choice of model parameters. We derive an upper limit on the gluino mass from the observed Higgs boson mass. We also discuss whether the model can explain the 3σ excess of the Z + jets + E T miss events reported by the ATLAS collaboration.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Dine, W. Fischler and M. Srednicki, Supersymmetric technicolor, Nucl. Phys. B 189 (1981) 575 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S. Dimopoulos and S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Dine and W. Fischler, A phenomenological model of particle physics based on supersymmetry, Phys. Lett. B 110 (1982) 227 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Dine and W. Fischler, A supersymmetric GUT, Nucl. Phys. B 204 (1982) 346 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C.R. Nappi and B.A. Ovrut, Supersymmetric extension of the SU(3) × SU(2) × U(1) model, Phys. Lett. B 113 (1982) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Álvarez-Gaumé, M. Claudson and M.B. Wise, Low-energy supersymmetry, Nucl. Phys. B 207 (1982) 96 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Hisano, M. Nagai, S. Sugiyama and T.T. Yanagida, Upperbound on squark masses in gauge-mediation model with light gravitino, Phys. Lett. B 665 (2008) 237 [arXiv:0804.2957] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K.I. Izawa, Y. Nomura, K. Tobe and T. Yanagida, Direct transmission models of dynamical supersymmetry breaking, Phys. Rev. D 56 (1997) 2886 [hep-ph/9705228] [INSPIRE].ADSGoogle Scholar
  9. [9]
    Y. Nomura and K. Tobe, Phenomenological aspects of a direct transmission model of dynamical supersymmetry breaking with the gravitino mass m 3/2 < 1 keV, Phys. Rev. D 58 (1998) 055002 [hep-ph/9708377] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M. Ibe, R. Sato, T.T. Yanagida and K. Yonekura, Gravitino dark matter and light gluino in an R-invariant low scale gauge mediation, JHEP 04 (2011) 077 [arXiv:1012.5466] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Ibe and R. Sato, A 125 GeV Higgs boson mass and gravitino dark matter in R-invariant direct gauge mediation, Phys. Lett. B 717 (2012) 197 [arXiv:1204.3499] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    ATLAS collaboration, Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets and large missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 318 [arXiv:1503.03290] [INSPIRE].
  13. [13]
    X. Lu, S. Shirai and T. Terada, ATLAS Z excess in minimal supersymmetric standard model, JHEP 09 (2015) 204 [arXiv:1506.07161] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C. Cheung, A.L. Fitzpatrick and D. Shih, (Extra)ordinary gauge mediation, JHEP 07 (2008) 054 [arXiv:0710.3585] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    K.-I. Izawa and T. Yanagida, Dynamical supersymmetry breaking in vector-like gauge theories, Prog. Theor. Phys. 95 (1996) 829 [hep-th/9602180] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K.A. Intriligator and S.D. Thomas, Dynamical supersymmetry breaking on quantum moduli spaces, Nucl. Phys. B 473 (1996) 121 [hep-th/9603158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    D. Shih, Spontaneous R-symmetry breaking in O’Raifeartaigh models, JHEP 02 (2008) 091 [hep-th/0703196] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    K.A. Intriligator, N. Seiberg and D. Shih, Supersymmetry breaking, R-symmetry breaking and metastable vacua, JHEP 07 (2007) 017 [hep-th/0703281] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    S. Abel, C. Durnford, J. Jaeckel and V.V. Khoze, Dynamical breaking of U(1)R and supersymmetry in a metastable vacuum, Phys. Lett. B 661 (2008) 201 [arXiv:0707.2958] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Giveon, A. Katz, Z. Komargodski and D. Shih, Dynamical SUSY and R-symmetry breaking in SQCD with massive and massless flavors, JHEP 10 (2008) 092 [arXiv:0808.2901] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    J.L. Evans, M. Ibe, M. Sudano and T.T. Yanagida, Simplified R-symmetry breaking and low-scale gauge mediation, JHEP 03 (2012) 004 [arXiv:1103.4549] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    D. Curtin, Z. Komargodski, D. Shih and Y. Tsai, Spontaneous R-symmetry breaking with multiple pseudomoduli, Phys. Rev. D 85 (2012) 125031 [arXiv:1202.5331] [INSPIRE].ADSGoogle Scholar
  24. [24]
    L.M. Carpenter, M. Dine, G. Festuccia and J.D. Mason, Implementing general gauge mediation, Phys. Rev. D 79 (2009) 035002 [arXiv:0805.2944] [INSPIRE].ADSGoogle Scholar
  25. [25]
    Z. Sun, Tree level spontaneous R-symmetry breaking in O’Raifeartaigh models, JHEP 01 (2009) 002 [arXiv:0810.0477] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Z. Komargodski and D. Shih, Notes on SUSY and R-symmetry breaking in Wess-Zumino models, JHEP 04 (2009) 093 [arXiv:0902.0030] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Ibe and R. Kitano, Minimal direct gauge mediation, Phys. Rev. D 77 (2008) 075003 [arXiv:0711.0416] [INSPIRE].ADSGoogle Scholar
  32. [32]
    K. Hamaguchi, M. Ibe, T.T. Yanagida and N. Yokozaki, Testing the minimal direct gauge mediation at the LHC, Phys. Rev. D 90 (2014) 015027 [arXiv:1403.1398] [INSPIRE].ADSGoogle Scholar
  33. [33]
    CMS collaboration, Searches for supersymmetry using the M T2 variable in hadronic events produced in pp collisions at 8 TeV, JHEP 05 (2015) 078 [arXiv:1502.04358] [INSPIRE].
  34. [34]
    ATLAS collaboration, Summary of the searches for squarks and gluinos using \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS experiment at the LHC, JHEP 10 (2015) 054 [arXiv:1507.05525] [INSPIRE].
  35. [35]
    CMS collaboration, Search for supersymmetry with photons in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 92 (2015) 072006 [arXiv:1507.02898] [INSPIRE].
  36. [36]
    ATLAS collaboration, Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV pp collisions with the ATLAS detector, Phys. Rev. D 92 (2015) 072001 [arXiv:1507.05493] [INSPIRE].
  37. [37]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m Z ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  44. [44]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    R. Sato and K. Yonekura, Low scale direct gauge mediation with perturbatively stable vacuum, JHEP 03 (2010) 017 [arXiv:0912.2802] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    K.I. Izawa and T. Yanagida, R invariant natural unification, Prog. Theor. Phys. 97 (1997) 913 [hep-ph/9703350] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K. Harigaya, M. Ibe and M. Suzuki, Mass-splitting between haves and have-nots — symmetry vs. Grand Unified Theory, JHEP 09 (2015) 155 [arXiv:1505.05024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    R. Rattazzi and U. Sarid, Large tan β in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Y. Kahn, M. McCullough and J. Thaler, Auxiliary gauge mediation: a new route to mini-split supersymmetry, JHEP 11 (2013) 161 [arXiv:1308.3490] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    E. Gabrielli and U. Sarid, Low-energy signals for a minimal gauge mediated model, Phys. Rev. Lett. 79 (1997) 4752 [hep-ph/9707546] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Hisano and Y. Shimizu, Revisiting signature of minimal gauge mediation, Phys. Lett. B 655 (2007) 269 [arXiv:0706.3145] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    B.A. Dobrescu and P.J. Fox, Uplifted supersymmetric Higgs region, Eur. Phys. J. C 70 (2010) 263 [arXiv:1001.3147] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    W. Altmannshofer and D.M. Straub, Viability of MSSM scenarios at very large tan β, JHEP 09 (2010) 078 [arXiv:1004.1993] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    M. Bach, J.-H. Park, D. Stöckinger and H. Stöckinger-Kim, Large muon (g − 2) with TeV-scale SUSY masses for tan β → ∞, JHEP 10 (2015) 026 [arXiv:1504.05500] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Fujii and T. Yanagida, Natural gravitino dark matter and thermal leptogenesis in gauge mediated supersymmetry breaking models, Phys. Lett. B 549 (2002) 273 [hep-ph/0208191] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Fujii, M. Ibe and T. Yanagida, Thermal leptogenesis and gauge mediation, Phys. Rev. D 69 (2004) 015006 [hep-ph/0309064] [INSPIRE].ADSGoogle Scholar
  58. [58]
    J. Hasenkamp and J. Kersten, Leptogenesis, gravitino dark matter and entropy production, Phys. Rev. D 82 (2010) 115029 [arXiv:1008.1740] [INSPIRE].ADSGoogle Scholar
  59. [59]
    J.P. Vega and G. Villadoro, SusyHD: Higgs mass determination in supersymmetry, JHEP 07 (2015) 159 [arXiv:1504.05200] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSzbMATHGoogle Scholar
  62. [62]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    T. Cohen et al., SUSY simplified models at 14, 33 and 100 TeV proton colliders, JHEP 04 (2014) 117 [arXiv:1311.6480] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    ATLAS collaboration, A search for supersymmetry in events containing a leptonically decaying Z boson, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, ATLAS-CONF-2015-082, CERN, Geneva Switzerland (2015).
  66. [66]
    G. Barenboim, J. Bernabeu, V.A. Mitsou, E. Romero and O. Vives, METing SUSY on the Z peak, Eur. Phys. J. C 76 (2016) 57 [arXiv:1503.04184] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A. Kobakhidze, N. Liu, L. Wu and J.M. Yang, ATLAS Z-peaked excess in the MSSM with a light sbottom or stop, Phys. Rev. D 92 (2015) 075008 [arXiv:1504.04390] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, ATLAS Z + missing transverse energy excess in the MSSM, Phys. Rev. D 92 (2015) 075029 [arXiv:1506.05799] [INSPIRE].ADSGoogle Scholar
  69. [69]
    J.H. Collins, J.A. Dror and M. Farina, Mixed stops and the ATLAS on-Z excess, Phys. Rev. D 92 (2015) 095022 [arXiv:1508.02419] [INSPIRE].ADSGoogle Scholar
  70. [70]
    M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].ADSGoogle Scholar
  74. [74]
    W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen and I. Niessen, Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    W. Beenakker et al., Squark and gluino hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    W. Beenakker et al., NLO+NLL squark and gluino production cross-sections with threshold-improved parton distributions, Eur. Phys. J. C 76 (2016) 53 [arXiv:1510.00375] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: confronting your favourite new physics model with LHC data, Comput. Phys. Commun. 187 (2014) 227 [arXiv:1312.2591] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    J. Cao, L. Shang, J.M. Yang and Y. Zhang, Explanation of the ATLAS Z-peaked excess in the NMSSM, JHEP 06 (2015) 152 [arXiv:1504.07869] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  80. [80]
    M. Cacciari, FastJet: a code for fast k t clustering and more, hep-ph/0607071 [INSPIRE].
  81. [81]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  83. [83]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE].
  88. [88]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [Erratum ibid. C 75 (2015) 408] [arXiv:1502.01518] [INSPIRE].
  89. [89]
    CMS collaboration, Search for physics beyond the standard model in events with two leptons, jets and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2015) 124 [arXiv:1502.06031] [INSPIRE].
  90. [90]
    CMS collaboration, Search for anomalous production of events with three or more leptons in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 90 (2014) 032006 [arXiv:1404.5801] [INSPIRE].
  91. [91]
    ATLAS collaboration, Search for supersymmetry in events with four or more leptons in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 90 (2014) 052001 [arXiv:1405.5086] [INSPIRE].
  92. [92]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].
  93. [93]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].
  94. [94]
    B. Mistlberger and F. Dulat, Limit setting procedures and theoretical uncertainties in Higgs boson searches, arXiv:1204.3851 [INSPIRE].
  95. [95]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  97. [97]
    M. Dine and D. MacIntire, Supersymmetry, naturalness and dynamical supersymmetry breaking, Phys. Rev. D 46 (1992) 2594 [hep-ph/9205227] [INSPIRE].ADSGoogle Scholar
  98. [98]
    K. Harigaya and M. Ibe, Anomaly mediated gaugino mass and path-integral measure, Phys. Rev. D 90 (2014) 085028 [arXiv:1409.5029] [INSPIRE].ADSGoogle Scholar
  99. [99]
    M. Ibe, T. Moroi and T.T. Yanagida, Possible signals of wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    M. Ibe and T.T. Yanagida, The lightest Higgs boson mass in pure gravity mediation model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation with m 3/2 = 10100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].ADSGoogle Scholar
  102. [102]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].
  103. [103]
    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].ADSGoogle Scholar
  104. [104]
    B. Bhattacherjee, B. Feldstein, M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation of supersymmetry breaking at the Large Hadron Collider, Phys. Rev. D 87 (2013) 015028 [arXiv:1207.5453] [INSPIRE].ADSGoogle Scholar
  105. [105]
    M. Cirelli, F. Sala and M. Taoso, Wino-like minimal dark matter and future colliders, JHEP 10 (2014) 033 [Erratum ibid. 01 (2015) 041] [arXiv:1407.7058] [INSPIRE].
  106. [106]
    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    H.-S. Goh and M. Ibe, R-axion detection at LHC, JHEP 03 (2009) 049 [arXiv:0810.5773] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    J.E. Kim and H.P. Nilles, The μ problem and the strong CP problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  110. [110]
    E.J. Chun, J.E. Kim and H.P. Nilles, A natural solution of the μ problem with a composite axion in the hidden sector, Nucl. Phys. B 370 (1992) 105 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Cheng-Wei Chiang
    • 1
    • 2
    • 3
    • 4
  • Keisuke Harigaya
    • 5
    • 6
    • 7
  • Masahiro Ibe
    • 4
    • 7
    Email author
  • Tsutomu T. Yanagida
    • 4
  1. 1.Center for Mathematics and Theoretical Physics and Department of PhysicsNational Central UniversityTaoyuanR.O.C.
  2. 2.Institute of PhysicsAcademia SinicaTaipeiR.O.C.
  3. 3.Physics DivisionNational Center for Theoretical SciencesHsinchuR.O.C.
  4. 4.Kavli IPMU (WPI), UTIASUniversity of TokyoKashiwaJapan
  5. 5.Department of PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  6. 6.Theoretical Physics GroupLawrence Berkeley National LaboratoryBerkeleyU.S.A.
  7. 7.ICRRUniversity of TokyoKashiwaJapan

Personalised recommendations