What is the γγ resonance at 750 GeV?

  • Roberto Franceschini
  • Gian F. Giudice
  • Jernej F. Kamenik
  • Matthew McCullough
  • Alex Pomarol
  • Riccardo Rattazzi
  • Michele Redi
  • Francesco Riva
  • Alessandro Strumia
  • Riccardo TorreEmail author
Open Access
Regular Article - Theoretical Physics


Run 2 LHC data show hints of a new resonance in the diphoton distribution at an invariant mass of 750 GeV. We analyse the data in terms of a new boson, extracting information on its properties and exploring theoretical interpretations. Scenarios covered include a narrow resonance and, as preliminary indications suggest, a wider resonance. If the width indications persist, the new particle is likely to belong to a strongly-interacting sector. We also show how compatibility between Run 1 and Run 2 data is improved by postulating the existence of an additional heavy particle, whose decays are possibly related to dark matter.


Beyond Standard Model Technicolor and Composite Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Olsen, CMS results, talk at ATLAS and CMS physics results from Run 2, LHC seminar, CERN, 15 December 2015,
  2. [2]
    M. Kado, ATLAS results, talk at ATLAS and CMS physics results from Run 2, LHC seminar, CERN, 15 December 2015,
  3. [3]
    ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081.
  4. [4]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004.
  5. [5]
    CMS collaboration, Search for High-Mass Diphoton Resonances in pp Collisions at \( \sqrt{s}=8 \) TeV with the CMS Detector, CMS-PAS-EXO-12-045.
  6. [6]
    ATLAS collaboration, Search for high-mass diphoton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 032004 [arXiv:1504.05511] [INSPIRE].
  7. [7]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].
  9. [9]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
  10. [10]
    S. Fichet, G. von Gersdorff and C. Royon, Scattering Light by Light at 750 GeV at the LHC, arXiv:1512.05751 [INSPIRE].
  11. [11]
    C. Csáki, J. Hubisz and J. Terning, Minimal model of a diphoton resonance: Production without gluon couplings, Phys. Rev. D 93 (2016) 035002 [arXiv:1512.05776] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C. Csáki, J. Hubisz, S. Lombardo and J. Terning, Gluon vs. Photon Production of a 750 GeV Diphoton Resonance, arXiv:1601.00638 [INSPIRE].
  13. [13]
    CMS collaboration, Search for Resonances Decaying to Dijet Final States at \( \sqrt{s}=8 \) TeV with Scouting Data, CMS-PAS-EXO-14-005.
  14. [14]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
  15. [15]
    CMS collaboration, Search for new resonances in the diphoton final state in the range between 150 and 850 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-HIG-14-006.
  16. [16]
    ATLAS collaboration, Search for high-mass diphoton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 032004 [arXiv:1504.05511] [INSPIRE].
  17. [17]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].
  18. [18]
    ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].
  19. [19]
    ATLAS collaboration, Search for new resonances in W γ and Zγ final states in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 428 [arXiv:1407.8150] [INSPIRE].
  20. [20]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].
  21. [21]
    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 744 (2015) 163 [arXiv:1502.04478] [INSPIRE].
  22. [22]
    ATLAS collaboration, A search for resonant Higgs-pair production in the \( b\overline{b}b\overline{b} \) final state in pp collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2014-005.
  23. [23]
    CMS collaboration, Search for a Higgs Boson in the Mass Range from 145 to 1000 GeV Decaying to a Pair of W or Z Bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
  24. [24]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a W boson pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 01 (2016) 032 [arXiv:1509.00389] [INSPIRE].
  25. [25]
    CMS collaboration, Searches for new physics using the \( t\overline{t} \) invariant mass distribution in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 111 (2013) 211804 [arXiv:1309.2030] [INSPIRE].
  26. [26]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  27. [27]
    CMS collaboration, Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks, JHEP 11 (2015) 071 [arXiv:1506.08329] [INSPIRE].
  28. [28]
    R. Barbieri and R. Torre, Signals of single particle production at the earliest LHC, Phys. Lett. B 695 (2011) 259 [arXiv:1008.5302] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  30. [30]
    J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: Mixing and single production, Phys. Rev. D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S.A.R. Ellis, R.M. Godbole, S. Gopalakrishna and J.D. Wells, Survey of vector-like fermion extensions of the Standard Model and their phenomenological implications, JHEP 09 (2014) 130 [arXiv:1404.4398] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    ATLAS collaboration, Search for vector-like B quarks in events with one isolated lepton, missing transverse momentum and jets at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 112011 [arXiv:1503.05425] [INSPIRE].
  33. [33]
    O. Matsedonskyi, F. Riva and T. Vantalon, Composite Charge 8/3 Resonances at the LHC, JHEP 04 (2014) 059 [arXiv:1401.3740] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].
  35. [35]
    L. Di Luzio, R. Gröber, J.F. Kamenik and M. Nardecchia, Accidental matter at the LHC, JHEP 07 (2015) 074 [arXiv:1504.00359] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    OPAL collaboration, G. Abbiendi et al., Search for nearly mass degenerate charginos and neutralinos at LEP, Eur. Phys. J. C 29 (2003) 479 [hep-ex/0210043] [INSPIRE].
  37. [37]
    ATLAS collaboration, Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 068 [arXiv:1411.6795] [INSPIRE].
  38. [38]
    CMS collaboration, Search for Decays of Stopped Long-Lived Particles Produced in Proton-Proton Collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 151 [arXiv:1501.05603] [INSPIRE].
  39. [39]
    ATLAS collaboration, Search for long-lived stopped R-hadrons decaying out-of-time with pp collisions using the ATLAS detector, Phys. Rev. D 88 (2013) 112003 [arXiv:1310.6584] [INSPIRE].
  40. [40]
    J. Gu and Z. Liu, Running after Diphoton, arXiv:1512.07624 [INSPIRE].
  41. [41]
    M. Son and A. Urbano, A new scalar resonance at 750 GeV: Towards a proof of concept in favor of strongly interacting theories, arXiv:1512.08307 [INSPIRE].
  42. [42]
    F. Goertz, J.F. Kamenik, A. Katz and M. Nardecchia, Indirect Constraints on the Scalar Di-Photon Resonance at the LHC, arXiv:1512.08500 [INSPIRE].
  43. [43]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
  44. [44]
    Y. Grossman, Z. Surujon and J. Zupan, How to test for mass degenerate Higgs resonances, JHEP 03 (2013) 176 [arXiv:1301.0328] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and Dark Matter scales from strong interactions, JHEP 01 (2015) 157 [arXiv:1410.1817] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  48. [48]
    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    G. Veneziano, U(1) Without Instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A First Top Partner Hunter’s Guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    R. Sundrum, Gravity’s scalar cousin, hep-th/0312212 [INSPIRE].
  54. [54]
    F. Coradeschi, P. Lodone, D. Pappadopulo, R. Rattazzi and L. Vitale, A naturally light dilaton, JHEP 11 (2013) 057 [arXiv:1306.4601] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, A Naturally Light Dilaton and a Small Cosmological Constant, Eur. Phys. J. C 74 (2014) 2790 [arXiv:1305.3919] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    E. Megias and O. Pujolàs, Naturally light dilatons from nearly marginal deformations, JHEP 08 (2014) 081 [arXiv:1401.4998] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].
  58. [58]
    G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher dimensional metrics and curvature Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [INSPIRE].
  59. [59]
    C. Kilic, T. Okui and R. Sundrum, Vectorlike Confinement at the LHC, JHEP 02 (2010) 018 [arXiv:0906.0577] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental Composite Dark Matter, JHEP 07 (2015) 039 [arXiv:1503.08749] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    V.A. Novikov, L.B. Okun, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Charmonium and Gluons: Basic Experimental Facts and Theoretical Introduction, Phys. Rept. 41 (1978) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    Y. Mambrini, G. Arcadi and A. Djouadi, The LHC diphoton resonance and dark matter, Phys. Lett. B 755 (2016) 426 [arXiv:1512.04913] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M. Backovic, A. Mariotti and D. Redigolo, Di-photon excess illuminates Dark Matter, arXiv:1512.04917 [INSPIRE].
  64. [64]
    S. Knapen, T. Melia, M. Papucci and K. Zurek, Rays of light from the LHC, arXiv:1512.04928 [INSPIRE].
  65. [65]
    C. Han, H.M. Lee, M. Park and V. Sanz, The diphoton resonance as a gravity mediator of dark matter, Phys. Lett. B 755 (2016) 371 [arXiv:1512.06376] [INSPIRE].ADSGoogle Scholar
  66. [66]
    X.-J. Bi, Q.-F. Xiang, P.-F. Yin and Z.-H. Yu, The 750 GeV diphoton excess at the LHC and dark matter constraints, arXiv:1512.06787 [INSPIRE].
  67. [67]
    K. Ghorbani and H. Ghorbani, The 750 GeV Diphoton Excess from a Pseudoscalar in Fermionic Dark Matter Scenario, arXiv:1601.00602 [INSPIRE].
  68. [68]
    S. Bhattacharya, S. Patra, N. Sahoo and N. Sahu, 750 GeV Di-photon excess at CERN LHC from a dark sector assisted scalar decay, arXiv:1601.01569 [INSPIRE].
  69. [69]
    F. D’Eramo, J. de Vries and P. Panci, A 750 GeV Portal: LHC Phenomenology and Dark Matter Candidates, arXiv:1601.01571 [INSPIRE].
  70. [70]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  71. [71]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
  72. [72]
    M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].
  74. [74]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  76. [76]
    P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Roberto Franceschini
    • 1
  • Gian F. Giudice
    • 1
  • Jernej F. Kamenik
    • 1
    • 2
    • 3
  • Matthew McCullough
    • 1
  • Alex Pomarol
    • 1
    • 4
  • Riccardo Rattazzi
    • 5
  • Michele Redi
    • 6
  • Francesco Riva
    • 1
  • Alessandro Strumia
    • 1
    • 7
  • Riccardo Torre
    • 5
    Email author
  1. 1.CERN, Theory DivisionGeneva 23Switzerland
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia
  3. 3.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Departament de Física and IFAE-BISTUniversitat Autònoma de BarcelonaBarcelonaSpain
  5. 5.Institut de Théorie des Phénomènes Physiques, EPFL, Route de la SorgeLausanneSwitzerland
  6. 6.INFN, Sezione di FirenzeSesto FiorentinoItaly
  7. 7.Dipartimento di Fisica dell’Università di Pisa and INFNPisaItaly

Personalised recommendations