Relic density of wino-like dark matter in the MSSM

  • M. Beneke
  • A. Bharucha
  • F. Dighera
  • C. Hellmann
  • A. Hryczuk
  • S. Recksiegel
  • P. Ruiz-Femenía
Open Access
Regular Article - Theoretical Physics


The relic density of TeV-scale wino-like neutralino dark matter in the MSSM is subject to potentially large corrections as a result of the Sommerfeld effect. A recently developed framework enables us to calculate the Sommerfeld-enhanced relic density in general MSSM scenarios, properly treating mixed states and multiple co-annihilating channels as well as including off-diagonal contributions. Using this framework, including on-shell one-loop mass splittings and running couplings and taking into account the latest experimental constraints, we perform a thorough study of the regions of parameter space surrounding the well known pure-wino scenario: namely the effect of sfermion masses being non-decoupled and of allowing non-negligible Higgsino or bino components in the lightest neutralino. We further perform an investigation into the effect of thermal corrections and show that these can safely be neglected. The results reveal a number of phenomenologically interesting but so far unexplored regions where the Sommerfeld effect is sizeable. We find, in particular, that the relic density can agree with experiment for dominantly wino neutralino dark matter with masses ranging from 1.7 to beyond 4 TeV. In light of these results the bounds from Indirect Detection on wino-like dark matter should be revisited.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
  2. [2]
    A. Fowlie, K. Kowalska, L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Dark matter and collider signatures of the MSSM, Phys. Rev. D 88 (2013) 055012 [arXiv:1306.1567] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M. Cahill-Rowley et al., Complementarity of dark matter searches in the phenomenological MSSM, Phys. Rev. D 91 (2015) 055011 [arXiv:1405.6716] [INSPIRE].ADSGoogle Scholar
  4. [4]
    E.A. Bagnaschi et al., Supersymmetric dark matter after LHC run 1, Eur. Phys. J. C 75 (2015) 500 [arXiv:1508.01173] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K.J. de Vries et al., The pMSSM10 after LHC run 1, Eur. Phys. J. C 75 (2015) 422 [arXiv:1504.03260] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
  7. [7]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
  8. [8]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Hryczuk, R. Iengo and P. Ullio, Relic densities including Sommerfeld enhancements in the MSSM, JHEP 03 (2011) 069 [arXiv:1010.2172] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    A. Hryczuk and R. Iengo, The one-loop and Sommerfeld electroweak corrections to the wino dark matter annihilation, JHEP 01 (2012) 163 [Erratum ibid. 06 (2012) 137] [arXiv:1111.2916] [INSPIRE].
  11. [11]
    A. Hryczuk, The Sommerfeld enhancement for scalar particles and application to sfermion co-annihilation regions, Phys. Lett. B 699 (2011) 271 [arXiv:1102.4295] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Beneke, C. Hellmann and P. Ruiz-Femenía, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos I. General framework and S-wave annihilation, JHEP 03 (2013) 148 [Erratum ibid. 10 (2013) 224] [arXiv:1210.7928] [INSPIRE].
  13. [13]
    C. Hellmann and P. Ruiz-Femenía, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos II. P-wave and next-to-next-to-leading order S-wave coefficients, JHEP 08 (2013) 084 [arXiv:1303.0200] [INSPIRE].
  14. [14]
    M. Beneke, C. Hellmann and P. Ruiz-Femenía, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements, JHEP 05 (2015) 115 [arXiv:1411.6924] [INSPIRE].
  15. [15]
    M. Beneke, C. Hellmann and P. Ruiz-Femenía, Heavy neutralino relic abundance with Sommerfeld enhancements — a study of pMSSM scenarios, JHEP 03 (2015) 162 [arXiv:1411.6930] [INSPIRE].
  16. [16]
    A. Hryczuk, I. Cholis, R. Iengo, M. Tavakoli and P. Ullio, Indirect detection analysis: wino dark matter case study, JCAP 07 (2014) 031 [arXiv:1401.6212] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino dark matter under siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Fan and M. Reece, In wino veritas? Indirect searches shed light on neutralino dark matter, JHEP 10 (2013) 124 [arXiv:1307.4400] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Bélanger, C. Boehm, M. Cirelli, J. Da Silva and A. Pukhov, PAMELA and FERMI-LAT limits on the neutralino-chargino mass degeneracy, JCAP 11 (2012) 028 [arXiv:1208.5009] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    B. Bhattacherjee, M. Ibe, K. Ichikawa, S. Matsumoto and K. Nishiyama, Wino dark matter and future dSph observations, JHEP 07 (2014) 080 [arXiv:1405.4914] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    E.J. Chun and J.-C. Park, Electro-weak dark matter: non-perturbative effect confronting indirect detections, Phys. Lett. B 750 (2015) 372 [arXiv:1506.07522] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    K. Harigaya, K. Kaneta and S. Matsumoto, Gaugino coannihilations, Phys. Rev. D 89 (2014) 115021 [arXiv:1403.0715] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].
  24. [24]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].
  25. [25]
    G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].
  26. [26]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3 : a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  28. [28]
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model, Phys. Rev. Lett. 112 (2014) 141801 [arXiv:1312.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Carena, J.R. Espinosa, M. Quirós and C.E.M. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].
  30. [30]
    H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].
  31. [31]
    S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept. 425 (2006) 265 [hep-ph/0412214] [INSPIRE].
  32. [32]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  33. [33]
    S. Stone, New physics from flavour, PoS(ICHEP2012)033 [arXiv:1212.6374] [INSPIRE].
  34. [34]
    M. Misiak and M. Steinhauser, NNLO QCD corrections to the \( \overline{B} \)X s γ matrix elements using interpolation in m c, Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [INSPIRE].
  35. [35]
    LHCb and CMS collaborations, Observation of the rare B s0μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
  36. [36]
    A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the standard model prediction for BR(B s,dμ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].
  37. [37]
    BaBar collaboration, J.P. Lees et al., Evidence of B +τ + ν decays with hadronic B tags, Phys. Rev. D 88 (2013) 031102 [arXiv:1207.0698] [INSPIRE].
  38. [38]
    Belle collaboration, I. Adachi et al., Evidence for \( {B}^{-}\to {\tau}^{-}{\overline{\nu}}_{\tau } \) with a hadronic tagging method using the full data sample of Belle, Phys. Rev. Lett. 110 (2013) 131801 [arXiv:1208.4678] [INSPIRE].
  39. [39]
    W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect probes of the MSSM after the Higgs discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J.M. Frere, D.R.T. Jones and S. Raby, Fermion masses and induction of the weak scale by supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Claudson, L.J. Hall and I. Hinchliffe, Low-energy supergravity: false vacua and vacuous predictions, Nucl. Phys. B 228 (1983) 501 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Drees and M.M. Nojiri, The neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].
  43. [43]
    P. Nath and R.L. Arnowitt, Predictions in SU(5) supergravity grand unification with proton stability and relic density constraints, Phys. Rev. Lett. 70 (1993) 3696 [hep-ph/9302318] [INSPIRE].
  44. [44]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  45. [45]
    T. Fritzsche and W. Hollik, Complete one loop corrections to the mass spectrum of charginos and neutralinos in the MSSM, Eur. Phys. J. C 24 (2002) 619 [hep-ph/0203159] [INSPIRE].
  46. [46]
    A.C. Fowler and G. Weiglein, Precise predictions for Higgs production in neutralino decays in the complex MSSM, JHEP 01 (2010) 108 [arXiv:0909.5165] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    A.C. Fowler, Higher order and CP-violating effects in the neutralino and Higgs boson sectors of the MSSM, Ph.D. thesis, Durham University, Durham U.K. (2010) [INSPIRE].
  48. [48]
    A. Bharucha, A. Fowler, G. Moortgat-Pick and G. Weiglein, Consistent on shell renormalisation of electroweakinos in the complex MSSM: LHC and LC predictions, JHEP 05 (2013) 053 [arXiv:1211.3134] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Bharucha, S. Heinemeyer, F. von der Pahlen and C. Schappacher, Neutralino decays in the complex MSSM at one-loop: a comparison of on-shell renormalization schemes, Phys. Rev. D 86 (2012) 075023 [arXiv:1208.4106] [INSPIRE].ADSGoogle Scholar
  50. [50]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  51. [51]
    T. Hahn and C. Schappacher, The implementation of the minimal supersymmetric standard model in FeynArts and FormCalc, Comput. Phys. Commun. 143 (2002) 54 [hep-ph/0105349] [INSPIRE].
  52. [52]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  53. [53]
    T. Fritzsche, T. Hahn, S. Heinemeyer, F. von der Pahlen, H. Rzehak and C. Schappacher, The implementation of the renormalized complex MSSM in FeynArts and FormCalc, Comput. Phys. Commun. 185 (2014) 1529 [arXiv:1309.1692] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Chatterjee, M. Drees, S. Kulkarni and Q. Xu, On the on-shell renormalization of the chargino and neutralino masses in the MSSM, Phys. Rev. D 85 (2012) 075013 [arXiv:1107.5218] [INSPIRE].ADSGoogle Scholar
  55. [55]
    C. Hellmann, Sommerfeld corrections in neutralino dark matter pair-annihilations and relic abundance in the general MSSM, Ph.D. thesis, Technische Universität München, Munich Germany (2015).
  56. [56]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    P. Gondolo, J. Edsjö, P. Ullio, L. Bergstrom, M. Schelke and E.A. Baltz, DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].
  58. [58]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  59. [59]
    H. Baer, A. Mustafayev, E.-K. Park and S. Profumo, Mixed wino dark matter: consequences for direct, indirect and collider detection, JHEP 07 (2005) 046 [hep-ph/0505227] [INSPIRE].
  60. [60]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  61. [61]
    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
  62. [62]
    J. Hisano, S. Matsumoto, O. Saito and M. Senami, Heavy wino-like neutralino dark matter annihilation into antiparticles, Phys. Rev. D 73 (2006) 055004 [hep-ph/0511118] [INSPIRE].
  63. [63]
    L. Roszkowski, E.M. Sessolo and A.J. Williams, Prospects for dark matter searches in the pMSSM, JHEP 02 (2015) 014 [arXiv:1411.5214] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M.E. Cabrera-Catalan, S. Ando, C. Weniger and F. Zandanel, Indirect and direct detection prospect for TeV dark matter in the nine parameter MSSM, Phys. Rev. D 92 (2015) 035018 [arXiv:1503.00599] [INSPIRE].ADSGoogle Scholar
  65. [65]
    J. Bramante, N. Desai, P. Fox, A. Martin, B. Ostdiek and T. Plehn, Towards the final word on neutralino dark matter, arXiv:1510.03460 [INSPIRE].
  66. [66]
    M. Beneke, A. Bharucha, F. Dighera, A. Hryczuk, S. Recksiegel and P. Ruiz-Femenía, work in progress.Google Scholar
  67. [67]
    M. Beneke, F. Dighera and A. Hryczuk, Relic density computations at NLO: infrared finiteness and thermal correction, JHEP 10 (2014) 045 [arXiv:1409.3049] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Quirós, Finite temperature field theory and phase transitions, in High energy physics and cosmology. Proceedings, Summer School, Trieste Italy June 29-July 17 1998, pg. 187 [hep-ph/9901312] [INSPIRE].
  69. [69]
    N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [INSPIRE].ADSGoogle Scholar
  70. [70]
    H.A. Weldon, Effective fermion masses of order gT in high temperature gauge theories with exact chiral invariance, Phys. Rev. D 26 (1982) 2789 [INSPIRE].ADSGoogle Scholar
  71. [71]
    E. Petitgirard, Massive fermion dispersion relation at finite temperature, Z. Phys. C 54 (1992) 673 [INSPIRE].ADSGoogle Scholar
  72. [72]
    C. Quimbay and S. Vargas-Castrillon, Fermionic dispersion relations in the standard model at finite temperature, Nucl. Phys. B 451 (1995) 265 [hep-ph/9504410] [INSPIRE].
  73. [73]
    S. Cassel, Sommerfeld factor for arbitrary partial wave processes, J. Phys. G 37 (2010) 105009 [arXiv:0903.5307] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    T.R. Slatyer, The Sommerfeld enhancement for dark matter with an excited state, JCAP 02 (2010) 028 [arXiv:0910.5713] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • M. Beneke
    • 1
  • A. Bharucha
    • 2
  • F. Dighera
    • 1
  • C. Hellmann
    • 1
  • A. Hryczuk
    • 1
    • 3
    • 4
  • S. Recksiegel
    • 1
  • P. Ruiz-Femenía
    • 1
  1. 1.Physik Department T31Technische Universität MünchenGarchingGermany
  2. 2.CPT, Aix-Marseille Université, Université de Toulon, CNRS, Case 907MarseilleFrance
  3. 3.National Centre for Nuclear ResearchWarsawPoland
  4. 4.Department of PhysicsUniversity of OsloOsloNorway

Personalised recommendations