Advertisement

A pseudoscalar decaying to photon pairs in the early LHC Run 2 data

  • Matthew Low
  • Andrea TesiEmail author
  • Lian-Tao Wang
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper we explore the possibility of a pseudoscalar resonance to account for the 750 GeV diphoton excess observed both at ATLAS and at CMS. We analyze the ingredients needed from the low energy perspective to obtain a sufficiently large diphoton rate to explain the signal while avoiding constraints from other channels. Additionally, we point out composite Higgs models in which one can naturally obtain a pseudoscalar at the 750 GeV mass scale and we estimate the pseudoscalar couplings to standard model particles that one would have in such models. A generic feature of models that can explain the excess is the presence of new particles in addition to the 750 GeV state. Finally, we note that due to the origin of the coupling of the resonance to photons, one expects to see comparable signals in the Zγ, ZZ, and W W channels.

Keywords

Beyond Standard Model Technicolor and Composite Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 b −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081 (2015).
  2. [2]
    CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004 (2015).
  3. [3]
    D. Buttazzo, A. Greljo and D. Marzocca, Knocking on new physics’ door with a scalar resonance, Eur. Phys. J. C 76 (2016) 116 [arXiv:1512.04929] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R. Franceschini et al., What is the gamma gamma resonance at 750 GeV?, arXiv:1512.04933 [INSPIRE].
  5. [5]
    S. Di Chiara, L. Marzola and M. Raidal, First interpretation of the 750 GeV di-photon resonance at the LHC, arXiv:1512.04939 [INSPIRE].
  6. [6]
    Y. Mambrini, G. Arcadi and A. Djouadi, The LHC diphoton resonance and dark matter, Phys. Lett. B 755 (2016) 426 [arXiv:1512.04913] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Backovic, A. Mariotti and D. Redigolo, Di-photon excess illuminates dark matter, arXiv:1512.04917 [INSPIRE].
  8. [8]
    A. Angelescu, A. Djouadi and G. Moreau, Scenarii for interpretations of the LHC diphoton excess: two Higgs doublets and vector-like quarks and leptons, arXiv:1512.04921 [INSPIRE].
  9. [9]
    S. Knapen, T. Melia, M. Papucci and K. Zurek, Rays of light from the LHC, arXiv:1512.04928 [INSPIRE].
  10. [10]
    K. Harigaya and Y. Nomura, Composite Models for the 750 GeV diphoton excess, Phys. Lett. B 754 (2016) 151 [arXiv:1512.04850] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Y. Nakai, R. Sato and K. Tobioka, Footprints of new strong dynamics via anomaly, arXiv:1512.04924 [INSPIRE].
  12. [12]
    A. Pilaftsis, Diphoton signatures from heavy axion decays at the CERN Large Hadron Collider, Phys. Rev. D 93 (2016) 015017 [arXiv:1512.04931] [INSPIRE].ADSGoogle Scholar
  13. [13]
    ATLAS collaboration, Search for high-mass diphoton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 92 (2015) 032004 [arXiv:1504.05511] [INSPIRE].
  14. [14]
    CMS collaboration, Search for high-mass diphoton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the CMS detector, CMS-PAS-EXO-12-045 (2012).
  15. [15]
    CMS collaboration, Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 750 (2015) 494 [arXiv:1506.02301] [INSPIRE].
  16. [16]
    ATLAS and CMS collaborations, ATLAS and CMS physics results from Run 2, December 15, CERN, Switzerland (2015), see webpage.
  17. [17]
    ATLAS collaboration, A search for tt resonances using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 148 [arXiv:1505.07018] [INSPIRE].
  18. [18]
    CMS collaboration, Search for resonant \( t\overline{t} \) production in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 012001 [arXiv:1506.03062] [INSPIRE].
  19. [19]
    CMS collaboration, Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks, JHEP 11 (2015) 071 [arXiv:1506.08329] [INSPIRE].
  20. [20]
    ATLAS collaboration, Search for new resonances in W γ and Zγ final states in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 428 [arXiv:1407.8150] [INSPIRE].
  21. [21]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].
  22. [22]
    ATLAS collaboration, Search for resonant diboson production in the \( \ell \ell q\overline{q} \) final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 69 [arXiv:1409.6190] [INSPIRE].
  23. [23]
    CMS collaboration, Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
  24. [24]
    CMS collaboration, Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 174 [arXiv:1405.3447] [INSPIRE].
  25. [25]
    ATLAS collaboration, Search for production of W W/W Z resonances decaying to a lepton, neutrino and jets in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015)209 [Erratum ibid. C 75 (2015) 370] [arXiv:1503.04677] [INSPIRE].
  26. [26]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
  27. [27]
    CMS collaboration, Search for resonances decaying to dijet final states at \( \sqrt{s}=8 \) TeV with scouting data, CMS-PAS-EXO-14-005 (2014).
  28. [28]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].
  29. [29]
    CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2015) 025 [arXiv:1412.6302] [INSPIRE].
  30. [30]
    ATLAS collaboration, Search for Higgs boson pair production in the \( b\overline{b}b\overline{b} \) final state from pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 412 [arXiv:1506.00285] [INSPIRE].
  31. [31]
    CMS collaboration, Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 560 [arXiv:1503.04114] [INSPIRE].
  32. [32]
    CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of τ leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].
  33. [33]
    ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].
  34. [34]
    ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector,Phys. Lett. B 744(2015)163 [arXiv:1502.04478] [INSPIRE].
  35. [35]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  36. [36]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].
  37. [37]
    TWIKI, SM Higgs production cross sections at 13-14 TeV, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt1314TeV (2015).
  38. [38]
    B.C. Allanach, P.S.B. Dev, S.A. Renner and K. Sakurai, Di-photon excess explained by a resonant sneutrino in R-parity violating supersymmetry, arXiv:1512.07645 [INSPIRE].
  39. [39]
    M. Spira, HIGLU: a program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].
  40. [40]
    LHC Higgs Cross Section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  41. [41]
    G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016)1 [arXiv:1506.01961] [INSPIRE].
  42. [42]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  43. [43]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the minimal composite Higgs model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Serra, Beyond the minimal top partner decay, JHEP 09 (2015) 176 [arXiv:1506.05110] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    E. Katz, A.E. Nelson and D.G.E. Walker, The intermediate Higgs, JHEP 08 (2005) 074 [hep-ph/0504252] [INSPIRE].
  46. [46]
    J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal conformal technicolor and precision electroweak tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].zbMATHGoogle Scholar
  47. [47]
    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The other natural two Higgs doublet model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, Eur. Phys. J. C 76 (2016) 6 [arXiv:1507.04548].
  49. [49]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  50. [50]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    O. Matsedonskyi, G. Panico and A. Wulzer, On the interpretation of top partners searches, JHEP 12 (2014) 097 [arXiv:1409.0100] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: mixing and single production, Phys. Rev. D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].ADSGoogle Scholar
  53. [53]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].
  54. [54]
    M. Schmaltz, The simplest little Higgs, JHEP 08 (2004) 056 [hep-ph/0407143] [INSPIRE].
  55. [55]
    K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].
  57. [57]
    M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite scalar dark matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Azatov and J. Galloway, Light custodians and Higgs physics in composite models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  2. 2.Department of Physics, Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.
  3. 3.Department of Physics, Enrico Fermi Institute, and Kavli Institute for Cosmological PhysicsUniversity of ChicagoChicagoU.S.A.

Personalised recommendations