Naturally large radiative lepton flavor violating Higgs decay mediated by lepton-flavored dark matter

  • Seungwon Baek
  • Zhaofeng KangEmail author
Open Access
Regular Article - Theoretical Physics


In the standard model (SM), lepton flavor violating (LFV) Higgs decay is absent at renormalizable level and thus it is a good probe to new physics. In this article we study a type of new physics that could lead to large LFV Higgs decay, i.e., a lepton-flavored dark matter (DM) model which is specified by a Majorana DM and scalar lepton mediators. Different from other similar models with similar setup, we introduce both left-handed and right-handed scalar leptons. They allow large LFV Higgs decay and thus may explain the tentative Br(hτμ) ∼ 1% experimental results from the LHC. In particular, we find that the stringent bound from τμγ can be naturally evaded. One reason, among others, is a large chirality violation in the mediator sector. Aspects of relic density and especially radiative direct detection of the leptonic DM are also investigated, stressing the difference from previous lepton-flavored DM models.


Beyond Standard Model Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R.H. Bernstein and P.S. Cooper, Charged lepton flavor violation: an experimenter’s guide, Phys. Rept. 532 (2013) 27 [arXiv:1307.5787] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.D. Bjorken and S. Weinberg, A mechanism for nonconservation of muon number, Phys. Rev. Lett. 38 (1977) 622 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    R. Harnik, J. Kopp and J. Zupan, Flavor violating Higgs decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    CMS collaboration, Search for Lepton-Flavour-Violating Decays of the Higgs Boson, Phys. Lett. B 749 (2015) 337 [arXiv:1502.07400] [INSPIRE].
  5. [5]
    ATLAS collaboration, Search for lepton-flavour-violating Hμτ decays of the Higgs boson with the ATLAS detector, JHEP 11 (2015) 211 [arXiv:1508.03372] [INSPIRE].
  6. [6]
    J. Kopp and M. Nardecchia, Flavor and CP-violation in Higgs decays, JHEP 10 (2014) 156 [arXiv:1406.5303] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Pilaftsis, Lepton flavor nonconservation in H 0 decays, Phys. Lett. B 285 (1992) 68 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E. Arganda, A.M. Curiel, M.J. Herrero and D. Temes, Lepton flavor violating Higgs boson decays from massive seesaw neutrinos, Phys. Rev. D 71 (2005) 035011 [hep-ph/0407302] [INSPIRE].ADSGoogle Scholar
  9. [9]
    E. Arganda, M.J. Herrero, X. Marcano and C. Weiland, Imprints of massive inverse seesaw model neutrinos in lepton flavor violating Higgs boson decays, Phys. Rev. D 91 (2015) 015001 [arXiv:1405.4300] [INSPIRE].ADSGoogle Scholar
  10. [10]
    E. Arganda, M.J. Herrero, X. Marcano and C. Weiland, Enhancement of the lepton flavor violating Higgs boson decay rates from SUSY loops in the inverse seesaw model, Phys. Rev. D 93 (2016) 055010 [arXiv:1508.04623] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].
  12. [12]
    A. Zee, Quantum numbers of majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    K.S. Babu, Model of ‘calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D. Aristizabal Sierra and A. Vicente, Explaining the CMS Higgs flavor violating decay excess, Phys. Rev. D 90 (2014) 115004 [arXiv:1409.7690] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, Higgsμτ in abelian and non-abelian flavor symmetry models, Nucl. Phys. B 896 (2015) 281 [arXiv:1412.3671] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    Y.-n. Mao and S.-h. Zhu, Higgs boson-μ-τ coupling at high and low energy colliders, Phys. Rev. D 93 (2016) 035014 [arXiv:1505.07668] [INSPIRE].ADSGoogle Scholar
  18. [18]
    Y. Omura, E. Senaha and K. Tobe, Lepton-flavor-violating Higgs decay hμτ and muon anomalous magnetic moment in a general two Higgs doublet model, JHEP 05 (2015) 028 [arXiv:1502.07824] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    I. Doršner et al., New physics models facing lepton flavor violating Higgs decays at the percent level, JHEP 06 (2015) 108 [arXiv:1502.07784] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Explaining hμ ± τ , BK * μ + μ and B + μ /BKe + e in a two-Higgs-doublet model with gauged L μL τ, Phys. Rev. Lett. 114 (2015) 151801 [arXiv:1501.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F.J. Botella, G.C. Branco, M. Nebot and M.N. Rebelo, Flavour changing Higgs couplings in a class of two Higgs doublet models, arXiv:1508.05101 [INSPIRE].
  22. [22]
    M.D. Campos, A.E.C. Hernández, H. Päs and E. Schumacher, Higgsμτ as an indication for S 4 flavor symmetry, Phys. Rev. D 91 (2015) 116011 [arXiv:1408.1652] [INSPIRE].ADSGoogle Scholar
  23. [23]
    L. de Lima, C.S. Machado, R.D. Matheus and L.A.F. do Prado, Higgs flavor violation as a signal to discriminate models, JHEP 11 (2015) 074 [arXiv:1501.06923] [INSPIRE].
  24. [24]
    X. Liu, L. Bian, X.-Q. Li and J. Shu, hμτ, muon g − 2 and a possible interpretation of the Galactic Center γ ray excess, arXiv:1508.05716 [INSPIRE].
  25. [25]
    A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the standard model, Phys. Rev. Lett. 116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C.-W. Chiang, H. Fukuda, M. Takeuchi and T.T. Yanagida, Flavor-changing neutral-current decays in top-specific variant axion model, JHEP 11 (2015) 057 [arXiv:1507.04354] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    W. Huang and Y.-L. Tang, Flavor anomalies at the LHC and the R-parity violating supersymmetric model extended with vectorlike particles, Phys. Rev. D 92 (2015) 094015 [arXiv:1509.08599] [INSPIRE].ADSGoogle Scholar
  28. [28]
    X.-G. He, J. Tandean and Y.-J. Zheng, Higgs decay hμτ with minimal flavor violation, JHEP 09 (2015) 093 [arXiv:1507.02673] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    W. Altmannshofer, S. Gori, A.L. Kagan, L. Silvestrini and J. Zupan, Uncovering mass generation through Higgs flavor violation, Phys. Rev. D 93 (2016) 031301 [arXiv:1507.07927] [INSPIRE].ADSGoogle Scholar
  30. [30]
    K. Cheung, W.-Y. Keung and P.-Y. Tseng, Leptoquark induced rare decay amplitudes hτ μ ± and τμγ, Phys. Rev. D 93 (2016) 015010 [arXiv:1508.01897] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S. Baek and K. Nishiwaki, Leptoquark explanation of hμτ and muon (g − 2), Phys. Rev. D 93 (2016) 015002 [arXiv:1509.07410] [INSPIRE].ADSGoogle Scholar
  32. [32]
    X.-J. Bi, P.-H. Gu, T. Li and X. Zhang, ATIC and PAMELA results on cosmic e ± excesses and neutrino masses, JHEP 04 (2009) 103 [arXiv:0901.0176] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C.-J. Lee and J. Tandean, Lepton-flavored scalar dark matter with minimal flavor violation, JHEP 04 (2015) 174 [arXiv:1410.6803] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P. Agrawal, Z. Chacko, C. Kilic and C.B. Verhaaren, A couplet from flavored dark matter, JHEP 08 (2015) 072 [arXiv:1503.03057] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Hamze, C. Kilic, J. Koeller, C. Trendafilova and J.-H. Yu, Lepton-flavored asymmetric dark matter and interference in direct detection, Phys. Rev. D 91 (2015) 035009 [arXiv:1410.3030] [INSPIRE].ADSGoogle Scholar
  36. [36]
    Y. Bai and J. Berger, Lepton portal dark matter, JHEP 08 (2014) 153 [arXiv:1402.6696] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C.-Q. Geng, D. Huang and L.-H. Tsai, X-ray line from the dark transition electric dipole, JHEP 08 (2014) 086 [arXiv:1406.6481] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Kile, A. Kobach and A. Soni, Lepton-flavored dark matter, Phys. Lett. B 744 (2015) 330 [arXiv:1411.1407] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored dark matter and its implications for direct detection and colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Chang, R. Edezhath, J. Hutchinson and M. Luty, Leptophilic effective WIMPs, Phys. Rev. D 90 (2014) 015011 [arXiv:1402.7358] [INSPIRE].ADSGoogle Scholar
  41. [41]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  42. [42]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar
  43. [43]
    BaBar collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ ±e ± γ and τ ±μ ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].
  44. [44]
    T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].
  45. [45]
    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].
  46. [46]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Guo, Z. Kang, J. Li and T. Li, Implications of Higgs sterility for the Higgs and stop sectors, arXiv:1308.3075 [INSPIRE].
  48. [48]
    J. Bernon, B. Dumont and S. Kraml, Status of Higgs couplings after Run 1 of the LHC, Phys. Rev. D 90 (2014) 071301 [arXiv:1409.1588] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Garny, A. Ibarra and S. Vogl, Signatures of Majorana dark matter with t-channel mediators, Int. J. Mod. Phys. D 24 (2015) 1530019 [arXiv:1503.01500] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  51. [51]
    X. Gao, Z. Kang and T. Li, Origins of the isospin violation of dark matter interactions, JCAP 01 (2013) 021 [arXiv:1107.3529] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Crivellin, M. Hoferichter and M. Procura, Accurate evaluation of hadronic uncertainties in spin-independent WIMP-nucleon scattering: disentangling two- and three-flavor effects, Phys. Rev. D 89 (2014) 054021 [arXiv:1312.4951] [INSPIRE].ADSGoogle Scholar
  54. [54]
    B. Kayser and A.S. Goldhaber, CPT and CP properties of Majorana particles and the consequences, Phys. Rev. D 28 (1983) 2341 [INSPIRE].ADSGoogle Scholar
  55. [55]
    J. Kopp, L. Michaels and J. Smirnov, Loopy constraints on leptophilic dark matter and internal bremsstrahlung, JCAP 04 (2014) 022 [arXiv:1401.6457] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G. ’t Hooft and M. Veltman, Scalar one loop integrals, Nucl. Phys. 153 (1979) 365 [INSPIRE]

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.School of PhysicsKIASSeoulKorea

Personalised recommendations