Advertisement

Berends-Giele recursions and the BCJ duality in superspace and components

  • Carlos R. MafraEmail author
  • Oliver Schlotterer
Open Access
Regular Article - Theoretical Physics

Abstract

The recursive method of Berends and Giele to compute tree-level gluon amplitudes is revisited using the framework of ten-dimensional super Yang-Mills. First, we prove that the pure spinor formula to compute SYM tree amplitudes derived in 2010 reduces to the standard Berends-Giele formula from the 80s when restricted to gluon amplitudes and additionally determine the fermionic completion. Second, using BRST cohomology manipulations in superspace, alternative representations of the component amplitudes are explored and the Bern-Carrasco-Johansson relations among partial tree amplitudes are derived in a novel way. Finally, it is shown how the supersymmetric components of manifestly local BCJ-satisfying tree-level numerators can be computed in a recursive fashion.

Keywords

Superspaces Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Twistor-Like Transform in Ten-Dimensions, Nucl. Phys. B 266 (1986) 245 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    P.S. Howe, Pure spinors lines in superspace and ten-dimensional supersymmetric theories, Phys. Lett. B 258 (1991) 141 [Addendum ibid. B 259 (1991) 511] [INSPIRE].
  4. [4]
    P.S. Howe, Pure spinors, function superspaces and supergravity theories in ten-dimensions and eleven-dimensions, Phys. Lett. B 273 (1991) 90 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM n-point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [INSPIRE].ADSGoogle Scholar
  7. [7]
    C.R. Mafra and O. Schlotterer, Towards one-loop SYM amplitudes from the pure spinor BRST cohomology, Fortsch. Phys. 63 (2015) 105 [arXiv:1410.0668] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C.R. Mafra and O. Schlotterer, Two-loop five-point amplitudes of super Yang-Mills and supergravity in pure spinor superspace, JHEP 10 (2015) 124 [arXiv:1505.02746] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor BRST blocks, JHEP 07 (2014) 153 [arXiv:1404.4986] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C.R. Mafra, Pure Spinor Superspace Identities for Massless Four-point Kinematic Factors, JHEP 04 (2008) 093 [arXiv:0801.0580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    C.R. Mafra, Simplifying the Tree-level Superstring Massless Five-point Amplitude, JHEP 01 (2010) 007 [arXiv:0909.5206] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, Six Open String Disk Amplitude in Pure Spinor Superspace, Nucl. Phys. B 846 (2011) 359 [arXiv:1011.0994] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].
  14. [14]
    C.R. Mafra and O. Schlotterer, The Structure of n-Point One-Loop Open Superstring Amplitudes, JHEP 08 (2014) 099 [arXiv:1203.6215] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Lee, C.R. Mafra and O. Schlotterer, Non-linear gauge transformations in D = 10 SYM theory and the BCJ duality, arXiv:1510.08843 [INSPIRE].
  16. [16]
    F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    F.A. Berends, W.T. Giele and H. Kuijf, Exact and Approximate Expressions for Multi-Gluon Scattering, Nucl. Phys. B 333 (1990) 120 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C.R. Mafra and O. Schlotterer, Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory, Phys. Rev. D 92 (2015) 066001 [arXiv:1501.05562] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    J.J.M. Carrasco, Gauge and Gravity Amplitude Relations, arXiv:1506.00974 [INSPIRE].
  21. [21]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ Numerators from Pure Spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    C.R. Mafra, PSS: A FORM Program to Evaluate Pure Spinor Superspace Expressions, arXiv:1007.4999 [INSPIRE].
  23. [23]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal Basis for Gauge Theory Amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, arXiv:0907.2211 [INSPIRE].
  25. [25]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-Point Superstring Disk Amplitude II. Amplitude and Hypergeometric Function Structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].
  26. [26]
    Y.-X. Chen, Y.-J. Du and B. Feng, A Proof of the Explicit Minimal-basis Expansion of Tree Amplitudes in Gauge Field Theory, JHEP 02 (2011) 112 [arXiv:1101.0009] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    F.A. Berends and W.T. Giele, Multiple Soft Gluon Radiation in Parton Processes, Nucl. Phys. B 313 (1989) 595 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A.A. Rosly and K.G. Selivanov, On amplitudes in selfdual sector of Yang-Mills theory, Phys. Lett. B 399 (1997) 135 [hep-th/9611101] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A.A. Rosly and K.G. Selivanov, Gravitational SD perturbiner, hep-th/9710196 [INSPIRE].
  30. [30]
    K.G. Selivanov, Postclassicism in tree amplitudes, hep-th/9905128 [INSPIRE].
  31. [31]
    K.G. Selivanov, On tree form-factors in (supersymmetric) Yang-Mills theory, Commun. Math. Phys. 208 (2000) 671 [hep-th/9809046] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    W.A. Bardeen, Selfdual Yang-Mills theory, integrability and multiparton amplitudes, Prog. Theor. Phys. Suppl. 123 (1996) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J.P. Harnad and S. Shnider, Constraints and field equations for ten-dimensional super Yang-Mills theory, Commun. Math. Phys. 106 (1986) 183 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    G. Policastro and D. Tsimpis, R 4 , purified, Class. Quant. Grav. 23 (2006) 4753 [hep-th/0603165] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    N. Berkovits and C.R. Mafra, Some Superstring Amplitude Computations with the Non-Minimal Pure Spinor Formalism, JHEP 11 (2006) 079 [hep-th/0607187] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    C.R. Mafra and O. Schlotterer, PSS: From pure spinor superspace to components, http://www.damtp.cam.ac.uk/user/crm66/SYM/pss.html.
  37. [37]
    R. Kleiss and H. Kuijf, Multi-Gluon Cross-sections and Five Jet Production at Hadron Colliders, Nucl. Phys. B 312 (1989) 616 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
  39. [39]
    M. Schocker, Lie elements and Knuth relations, Canad. J. Math. 56 (2004) 871 [math/0209327].
  40. [40]
    R. Ree, Lie elements and an algebra associated with shuffles, Ann. Math. 68 (1958) 210.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    S. Davies, One-Loop QCD and Higgs to Partons Processes Using Six-Dimensional Helicity and Generalized Unitarity, Phys. Rev. D 84 (2011) 094016 [arXiv:1108.0398] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S. Badger, H. Frellesvig and Y. Zhang, A Two-Loop Five-Gluon Helicity Amplitude in QCD, JHEP 12 (2013) 045 [arXiv:1310.1051] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Tolotti and S. Weinzierl, Construction of an effective Yang-Mills Lagrangian with manifest BCJ duality, JHEP 07 (2013) 111 [arXiv:1306.2975] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institute for Advanced Study, School of Natural SciencesPrincetonU.S.A.
  2. 2.DAMTP, University of CambridgeCambridgeU.K.
  3. 3.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdamGermany

Personalised recommendations