Enhanced gauge symmetry and winding modes in double field theory

  • G. Aldazabal
  • M. GrañaEmail author
  • S. Iguri
  • M. Mayo
  • C. Nuñez
  • J. A. Rosabal
Open Access
Regular Article - Theoretical Physics


We provide an explicit example of how the string winding modes can be incorporated in double field theory. Our guiding case is the closed bosonic string compactified on a circle of radius close to the self-dual point, where some modes with non-zero winding or discrete momentum number become massless and enhance the U(1) × U(1) symmetry to SU(2) × SU(2). We compute three-point string scattering amplitudes of massless and slightly massive states, and extract the corresponding effective low energy gauge field theory. The enhanced gauge symmetry at the self-dual point and the Higgs-like mechanism arising when changing the compactification radius are examined in detail. The extra massless fields associated to the enhancement are incorporated into a generalized frame with \( \frac{O\left(d+3,d+3\right)}{O\left(d+3\right)\times O\left(d+3\right)} \) structure, where d is the number of non-compact dimensions. We devise a consistent double field theory action that reproduces the low energy string effective action with enhanced gauge symmetry. The construction requires a truly non-geometric frame which explicitly depends on both the compact coordinate along the circle and its dual.


String Duality Bosonic Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281 [math/0209099] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M. Gualtieri, Generalized complex geometry, D.Phil. thesis, Oxford University, Oxford U.K. (2004) [math/0401221] [INSPIRE].
  3. [3]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    G. Aldazabal, D. Marques and C. Núñez, Double field theory: a pedagogical review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D.S. Berman and D.C. Thompson, Duality symmetric string and M-theory, Phys. Rept. 566 (2014) 1 [arXiv:1306.2643] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    O. Hohm, D. Lüst and B. Zwiebach, The spacetime of double field theory: review, remarks and outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    O. Hohm, W. Siegel and B. Zwiebach, Doubled α-geometry, JHEP 02 (2014) 065 [arXiv:1306.2970] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    O. Hohm and B. Zwiebach, Double field theory at order α′, JHEP 11 (2014) 075 [arXiv:1407.3803] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    O.A. Bedoya, D. Marques and C. Núñez, Heterotic α-corrections in double field theory, JHEP 12 (2014) 074 [arXiv:1407.0365] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Marques and C.A. Núñez, T-duality and α-corrections, JHEP 10 (2015) 084 [arXiv:1507.00652] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Coimbra, R. Minasian, H. Triendl and D. Waldram, Generalised geometry for string corrections, JHEP 11 (2014) 160 [arXiv:1407.7542] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    G. Aldazabal, W. Baron, D. Marques and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].
  20. [20]
    D. Geissbuhler, Double field theory and N = 4 gauged supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 1: introduction, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge U.K. (1988).Google Scholar
  22. [22]
    J. Polchinski, String theory vol. I: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998).CrossRefzbMATHGoogle Scholar
  23. [23]
    D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 2. The interacting heterotic string, Nucl. Phys. B 267 (1986) 75 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J. Maharana, Scattering of stringy states in compactified closed bosonic string, Nucl. Phys. B 896 (2015) 657 [arXiv:1412.3888] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    D. Geissbuhler, D. Marques, C. Núñez and V. Penas, Exploring double field theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, arXiv:1401.3360 [INSPIRE].
  29. [29]
    M. Graña and D. Marques, Gauged double field theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  33. [33]
    G. Dibitetto, J.J. Fernandez-Melgarejo, D. Marques and D. Roest, Duality orbits of non-geometric fluxes, Fortsch. Phys. 60 (2012) 1123 [arXiv:1203.6562] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    K. Lee, C. Strickland-Constable and D. Waldram, New gaugings and non-geometry, arXiv:1506.03457 [INSPIRE].
  35. [35]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Graña, R. Minasian, H. Triendl and T. Van Riet, Quantization problem in Scherk-Schwarz compactifications, Phys. Rev. D 88 (2013) 085018 [arXiv:1305.0785] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, arXiv:1401.3360 [INSPIRE].
  38. [38]
    M.B. Schulz, T-folds, doubled geometry and the SU(2) WZW model, JHEP 06 (2012) 158 [arXiv:1106.6291] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    P.d. Bosque, F. Hassler and D. Lüst, Flux formulation of DFT on group manifolds and generalized Scherk-Schwarz compactifications, JHEP 02 (2016) 039 [arXiv:1509.04176] [INSPIRE].
  40. [40]
    S.F. Hassan and A. Sen, Marginal deformations of WZNW and coset models from O(d, d) transformation, Nucl. Phys. B 405 (1993) 143 [hep-th/9210121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    K. Lee, Towards weakly constrained double field theory, arXiv:1509.06973 [INSPIRE].
  42. [42]
    E. Witten, Non-Abelian bosonization in two-dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    D. Nemeschansky and S. Yankielowicz, Critical dimension of string theories in curved space, Phys. Rev. Lett. 54 (1985) 620 [Erratum ibid. 54 (1985) 1736] [INSPIRE].
  44. [44]
    R.I. Nepomechie, Non-Abelian symmetries from higher dimensions in string theories, Phys. Rev. D 33 (1986) 3670 [Erratum ibid. D 36 (1987) 3290] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • G. Aldazabal
    • 1
    • 2
  • M. Graña
    • 3
    Email author
  • S. Iguri
    • 4
  • M. Mayo
    • 1
    • 2
  • C. Nuñez
    • 4
    • 5
  • J. A. Rosabal
    • 5
  1. 1.Centro Atómico BarilocheS.C. de BarilocheArgentina
  2. 2.Instituto Balseiro (CNEA-UNC) and CONICETS.C. de BarilocheArgentina
  3. 3.Institut de Physique Théorique, CEA/SaclayGif-sur-Yvette CedexFrance
  4. 4.Instituto de Astronomía y Física del Espacio (CONICET-UBA)Universidad de Buenos AiresBuenos AiresArgentina
  5. 5.Departamento de Física, FCENUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations