Notes on super Killing tensors
- 81 Downloads
- 3 Citations
Abstract
The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.
Keywords
Extended Supersymmetry Superspaces Higher Spin SymmetryNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
- [1]M.F. Sohnius, The conformal group in superspace, in Proceedings, Quantum Theory and The Structure Of Time and Space, vol. 2 (in memoriam Werner Heisenberg), München Germany (1977), pg. 241 and München Max-Planck-inst. Phys., MPI-PAE-PTH 32-76, Germany (1976) [INSPIRE].
- [2]A. Ferber, Supertwistors and conformal supersymmetry, Nucl. Phys. B 132 (1978) 55 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [3]W. Lang, Construction of the minimal superspace translation tensor and the derivation of the supercurrent, Nucl. Phys. B 179 (1981) 106 [INSPIRE].ADSCrossRefGoogle Scholar
- [4]L. Bonora, P. Pasti and M. Tonin, Cohomologies and anomalies in supersymmetric theories, Nucl. Phys. B 252 (1985) 458 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [5]K.-I. Shizuya, Supercurrents and superconformal symmetry, Phys. Rev. D 35 (1987) 1848 [INSPIRE].ADSMathSciNetGoogle Scholar
- [6]P.S. Howe and G.G. Hartwell, A superspace survey, Class. Quant. Grav. 12 (1995) 1823 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [7]I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity: or a walk through superspace, IOP, Bristol U.K. (1995) [INSPIRE].
- [8]K. Coulembier, P. Somberg and V. Soucek, Joseph-like ideals and harmonic analysis for \( \mathfrak{o}\mathfrak{s}\mathfrak{p}\left(m\Big|2n\right) \), Int. Math. Res. Not. 2014 (2014) 4291 [arXiv:1210.3507].MathSciNetMATHGoogle Scholar
- [9]W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
- [10]M. Scheunert, W. Nahm and V. Rittenberg, Classification of all simple graded Lie algebras whose Lie algebra is reductive. 1, J. Math. Phys. 17 (1976) 1626 [INSPIRE].
- [11]M. Scheunert, W. Nahm and V. Rittenberg, Classification of all simple graded Lie algebras whose Lie algebra is reductive. 2. Construction of the exceptional algebras, J. Math. Phys. 17 (1976) 1640 [INSPIRE].
- [12]V.G. Kac, A sketch of Lie superalgebra theory, Commun. Math. Phys. 53 (1977) 31 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [13]V.G. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8 [INSPIRE].CrossRefMATHGoogle Scholar
- [14]I. Bars, B. Morel and H. Ruegg, Kac-Dynkin diagrams and supertableaux, J. Math. Phys. 24 (1983) 2253 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [15]D. Leites, Indecomposable representations of Lie superalgebras, math/0202184.
- [16]M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645 [hep-th/0206233] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
- [17]A. Salam and J.A. Strathdee, Supergauge transformations, Nucl. Phys. B 76 (1974) 477 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [18]S. Ferrara, J. Wess and B. Zumino, Supergauge multiplets and superfields, Phys. Lett. B 51 (1974) 239 [INSPIRE].ADSCrossRefGoogle Scholar
- [19]V.I. Ogievetsky and E. Sokatchev, Superfield equations of motion, J. Phys. A 10 (1977) 2021 [INSPIRE].ADSGoogle Scholar
- [20]J. Wess and B. Zumino, Superspace formulation of supergravity, Phys. Lett. B 66 (1977) 361 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [21]V. Ogievetsky and E. Sokatchev, Structure of supergravity group, Phys. Lett. B 79 (1978) 222 [Czech. J. Phys. B 29 (1979) 68] [INSPIRE].
- [22]W. Siegel and S.J. Gates, Jr., Superfield supergravity, Nucl. Phys. B 147 (1979) 77 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [23]V.P. Akulov and D.V. Volkov, Goldstone fields with spin 1/2, Theor. Math. Phys. 18 (1974) 28 [Teor. Mat. Fiz. 18 (1974) 39] [INSPIRE].
- [24]Y.I. Manin, Gauge field theory and complex geometry, Grundlehren der mathematischen Wissenschaften 289, Springer, Berlin Germany (1988) [INSPIRE].
- [25]P. Dolan and N.S. Swaminarayan, Solutions of the geodesic deviation equation obtained by using hidden symmetries, Proc. Roy. Irish Acad. A 84 (1984) 133.MathSciNetMATHGoogle Scholar
- [26]P.S. Howe, Weyl superspace, Phys. Lett. B 415 (1997) 149 [hep-th/9707184] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [27]M. Cederwall, U. Gran, B.E.W. Nilsson and D. Tsimpis, Supersymmetric corrections to eleven-dimensional supergravity, JHEP 05 (2005) 052 [hep-th/0409107] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [28]S.M. Kuzenko, Supersymmetric spacetimes from curved superspace, PoS (CORFU2014) 140 [arXiv:1504.08114] [INSPIRE].
- [29]W. Siegel, Solution to constraints in Wess-Zumino supergravity formalism, Nucl. Phys. B 142 (1978) 301 [INSPIRE].ADSCrossRefGoogle Scholar
- [30]P.S. Howe and R.W. Tucker, Scale invariance in superspace, Phys. Lett. B 80 (1978) 138 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [31]L. Brink and J.H. Schwarz, Quantum superspace, Phys. Lett. B 100 (1981) 310 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [32]W. Siegel, Hidden local supersymmetry in the supersymmetric particle action, Phys. Lett. B 128 (1983) 397 [INSPIRE].ADSCrossRefGoogle Scholar
- [33]D.P. Sorokin, V.I. Tkach, D.V. Volkov and A.A. Zheltukhin, From the superparticle Siegel symmetry to the spinning particle proper time supersymmetry, Phys. Lett. B 216 (1989) 302 [INSPIRE].ADSCrossRefGoogle Scholar
- [34]D.P. Sorokin, V.I. Tkach and D.V. Volkov, Superparticles, twistors and Siegel symmetry, Mod. Phys. Lett. A 4 (1989) 901 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [35]J.A. Schouten, Über Differentialkonkomitanten zweier kontravarianten Grössen (in German), Indag. Math. 2 (1940) 449.MathSciNetGoogle Scholar
- [36]J.A. Schouten, On the differential operators of the first order in tensor calculus, in Cremonese. Convegno Int. Geom. Diff., Italy (1953), pg. 1.
- [37]A. Nijenhuis, Jacobi-type identities for bilinear differential concomitants of certain tensor fields I, Indag. Math. 17 (1953) 390.MathSciNetMATHGoogle Scholar
- [38]P. Dolan, A. Kladouchou and C. Card, On the significance of Killing tensors, Gen. Rel. Grav. 21 (1989) 427.ADSMathSciNetCrossRefMATHGoogle Scholar
- [39]D.V. Soroka and V.A. Soroka, Generalizations of Schouten-Nijenhuis bracket, Proc. Inst. Math. NAS Ukraine 50 (2004) 1480 [hep-th/0401088] [INSPIRE].MathSciNetMATHGoogle Scholar
- [40]M. Dubois-Violette and P.W. Michor, A common generalization of the Fröhlicher-Nijenhuis bracket and the Schouten bracket for symmetric multivector fields, alg-geom/9401006 [INSPIRE].
- [41]G.W. Gibbons, R.H. Rietdijk and J.W. van Holten, SUSY in the sky, Nucl. Phys. B 404 (1993) 42 [hep-th/9303112] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [42]O.P. Santillan, Hidden symmetries and supergravity solutions, J. Math. Phys. 53 (2012) 043509 [arXiv:1108.0149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [43]P.S. Howe and P.K. Townsend, The massless superparticle as Chern-Simons mechanics, Phys. Lett. B 259 (1991) 285 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [44]P.S. Howe, K.S. Stelle and P.K. Townsend, Superactions, Nucl. Phys. B 191 (1981) 445 [INSPIRE].ADSCrossRefGoogle Scholar
- [45]S.M. Kuzenko, J.-H. Park, G. Tartaglino-Mazzucchelli and R. Unge, Off-shell superconformal nonlinear σ-models in three dimensions, JHEP 01 (2011) 146 [arXiv:1011.5727] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [46]S.M. Kuzenko, On compactified harmonic/projective superspace, 5D superconformal theories and all that, Nucl. Phys. B 745 (2006) 176 [hep-th/0601177] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [47]K.A. Intriligator and W. Skiba, Bonus symmetry and the operator product expansion of N =4 super Yang-Mills,Nucl. Phys. B 559 (1999) 165[hep-th/9905020] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [48]A.A. Rosly, Super Yang-Mills constraints as integrability conditions, in Group theoretical methods in physics, M.A. Markov ed., Nauka, Moscow Russia (1983), pg. 263.Google Scholar
- [49]A.A. Roslyi and A.S. Schwarz, Supersymmetry in a space with auxiliary dimensions, Commun. Math. Phys. 105 (1986) 645 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [50]A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469 [Erratum ibid. 2 (1985) 127] [INSPIRE].
- [51]A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained off-shell N =3 supersymmetric Yang-Mills theory, Class. Quant. Grav. 2(1985) 155[INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [52]A. Karlhede, U. Lindström and M. Roček, Selfinteracting tensor multiplets in N = 2 superspace, Phys. Lett. B 147 (1984) 297 [INSPIRE].ADSCrossRefGoogle Scholar
- [53]U. Lindström and M. Roček, Properties of hyper-Kähler manifolds and their twistor spaces, Commun. Math. Phys. 293 (2010) 257 [arXiv:0807.1366] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [54]J. Lukierski and A. Nowicki, General superspaces from supertwistors, Phys. Lett. B 211 (1988) 276 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [55]G.G. Hartwell and P.S. Howe, (N, p, q) harmonic superspace, Int. J. Mod. Phys. A 10 (1995) 3901 [hep-th/9412147] [INSPIRE].
- [56]J.P. Harnad and S. Shnider, Isotropic geometry, twistors and supertwistors. 1. The generalized Klein correspondence and spinor flags, J. Math. Phys. 33 (1992) 3197 [INSPIRE].
- [57]J.P. Harnad and S. Shnider, Isotropic geometry and twistors in higher dimensions. 2. Odd dimensions, reality conditions and twistor superspaces, J. Math. Phys. 36 (1995) 1945 [INSPIRE].
- [58]R. Penrose and W. Rindler, Spinors and space-time. Vol. 2: spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge U.K. (1988) [INSPIRE].
- [59]R.J. Baston and M.G. Eastwood, The Penrose transform: its interaction with representation theory, Clarendon, Oxford U.K. (1989) [INSPIRE].
- [60]R.S. Ward and R.O. Wells, Twistor geometry and field theory, Cambridge University Press, Cambridge U.K. (1991).MATHGoogle Scholar
- [61]P.J. Heslop and P.S. Howe, Aspects of N = 4 SYM, JHEP 01 (2004) 058 [hep-th/0307210] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [62]B.M. Zupnik and D.V. Khetselius, Three-dimensional extended supersymmetry in the harmonic superspace (in Russian), Sov. J. Nucl. Phys. 47 (1988) 730 [Yad. Fiz. 47 (1988) 1147] [INSPIRE].
- [63]P.S. Howe and M.I. Leeming, Harmonic superspaces in low dimensions, Class. Quant. Grav. 11 (1994) 2843 [hep-th/9408062] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [64]J. Grundberg and U. Lindström, Actions for linear multiplets in six-dimensions, Class. Quant. Grav. 2 (1985) L33 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [65]P.S. Howe, K.S. Stelle and P.C. West, N = 1 D = 6 harmonic superspace, Class. Quant. Grav. 2 (1985) 815 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [66]P.J. Heslop, Aspects of superconformal field theories in six dimensions, JHEP 07 (2004) 056 [hep-th/0405245] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [67]A.K.H. Bengtsson, I. Bengtsson, M. Cederwall and N. Linden, Particles, superparticles and twistors, Phys. Rev. D 36 (1987) 1766 [INSPIRE].ADSMathSciNetGoogle Scholar
- [68]P.K. Townsend, Supertwistor formulation of the spinning particle, Phys. Lett. B 261 (1991) 65 [INSPIRE].ADSCrossRefGoogle Scholar
- [69]A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. 9 (1976) 1.MathSciNetMATHGoogle Scholar
- [70]A. Braverman and A. Joseph, The minimal realisation from deformation theory, J. Alg. 205 (1998) 13.MathSciNetCrossRefMATHGoogle Scholar
- [71]M. Eastwood, P. Somberg and V. Souček, Special tensors in the deformation theory of quadratic algebras for the classical Lie algebras, J. Geom. Phys. 57 (2007) 2539.ADSMathSciNetCrossRefMATHGoogle Scholar
- [72]P.S. Howe and U. Lindström, in preparation.Google Scholar
- [73]K. Govil and M. Günaydin, Deformed twistors and higher spin conformal (super-)algebras in four dimensions, JHEP 03 (2015) 026 [arXiv:1312.2907] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [74]K. Govil and M. Günaydin, Deformed twistors and higher spin conformal (super-)algebras in six dimensions, JHEP 07 (2014) 004 [arXiv:1401.6930] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [75]S. Fernando and M. Günaydin, Massless conformal fields, AdS d+1 /CF T d higher spin algebras and their deformations, Nucl. Phys. B 904 (2016) 494 [arXiv:1511.02167] [INSPIRE].ADSCrossRefMATHGoogle Scholar
- [76]C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].ADSGoogle Scholar
- [77]E.S. Fradkin and M.A. Vasiliev, Superalgebra of higher spins and auxiliary fields, Int. J. Mod. Phys. A 3 (1988) 2983 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [78]M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, in The many faces of the superworld, M.A. Shifman ed., World Scientific, Singapore (2000), pg. 533 [hep-th/9910096] [INSPIRE].
- [79]E. Sezgin and P. Sundell, Higher spin N = 8 supergravity, JHEP 11 (1998) 016 [hep-th/9805125] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [80]E. Sezgin and P. Sundell, On curvature expansion of higher spin gauge theory, Class. Quant. Grav. 18 (2001) 3241 [hep-th/0012168] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [81]E. Sezgin and P. Sundell, Supersymmetric higher spin theories, J. Phys. A 46 (2013) 214022 [arXiv:1208.6019] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
- [82]J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
- [83]S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [84]E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [85]E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
- [86]I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O (N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [87]A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].
- [88]J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [89]N. Boulanger, D. Ponomarev, E.D. Skvortsov and M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT, Int. J. Mod. Phys. A 28 (2013) 1350162 [arXiv:1305.5180] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [90]M. Bianchi, F.A. Dolan, P.J. Heslop and H. Osborn, N = 4 superconformal characters and partition functions, Nucl. Phys. B 767 (2007) 163 [hep-th/0609179] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [91]M. Bianchi, P.J. Heslop and F. Riccioni, More on La Grande Bouffe, JHEP 08 (2005) 088 [hep-th/0504156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [92]S.J. Gates, Jr., S.M. Kuzenko and A.G. Sibiryakov, N = 2 supersymmetry of higher superspin massless theories, Phys. Lett. B 412 (1997) 59 [hep-th/9609141] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [93]G.J. Weir, Conformal Killing tensors in reducible spaces, J. Math. Phys. 18 (1977) 1782.ADSCrossRefMATHGoogle Scholar
- [94]R. Rani, S.B. Edgar and A. Barnes, Killing tensors and conformal Killing tensors from conformal Killing vectors, Class. Quant. Grav. 20 (2003) 1929 [gr-qc/0301059] [INSPIRE].
- [95]G. Thompson, Killing tensors in spaces of constant curvature, J. Math. Phys. 27 (1986) 2693.ADSMathSciNetCrossRefMATHGoogle Scholar
- [96]M. Cariglia, G.W. Gibbons, J.W. van Holten, P.A. Horvathy, P. Kosinski and P.M. Zhang, Killing tensors and canonical geometry, Class. Quant. Grav. 31 (2014) 125001 [arXiv:1401.8195] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [97]A. Lischewski, Charged conformal Killing spinors, J. Math. Phys. 56 (2015) 013510 [arXiv:1403.2311] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [98]R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
- [99]Y. Chervonyi and O. Lunin, Killing(-Yano) tensors in string theory, JHEP 09 (2015) 182 [arXiv:1505.06154] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar