Signatures of top flavour-changing dark matter

  • Jorgen D’Hondt
  • Alberto Mariotti
  • Kentarou Mawatari
  • Seth Moortgat
  • Pantelis Tziveloglou
  • Gerrit Van Onsem
Open Access
Regular Article - Theoretical Physics

Abstract

We develop the phenomenology of scenarios in which a dark matter candidate interacts with a top quark through flavour-changing couplings, employing a simplified dark matter model with an s-channel vector-like mediator. We study in detail the top-charm flavour-changing interaction, by investigating the single top plus large missing energy signature at the LHC as well as constraints from the relic density and direct and indirect dark matter detection experiments. We present strategies to distinguish between the top-charm and top-up flavour-changing models by taking advantage of the lepton charge asymmetry as well as by using charm-tagging techniques on an extra jet. We also show the complementarity between the LHC and canonical dark matter experiments in exploring the viable parameter space of the models.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

References

  1. [1]
    D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966 [INSPIRE].
  2. [2]
    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J. Andrea, B. Fuks and F. Maltoni, Monotops at the LHC, Phys. Rev. D 84 (2011) 074025 [arXiv:1106.6199] [INSPIRE].ADSGoogle Scholar
  4. [4]
    I. Boucheneb, G. Cacciapaglia, A. Deandrea and B. Fuks, Revisiting monotop production at the LHC, JHEP 01 (2015) 017 [arXiv:1407.7529] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A. Kumar and S. Tulin, Top-flavored dark matter and the forward-backward asymmetry, Phys. Rev. D 87 (2013) 095006 [arXiv:1303.0332] [INSPIRE].ADSGoogle Scholar
  6. [6]
    L. Lopez-Honorez and L. Merlo, Dark matter within the minimal flavour violation ansatz, Phys. Lett. B 722 (2013) 135 [arXiv:1303.1087] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Kile and A. Soni, Flavored Dark Matter in Direct Detection Experiments and at LHC, Phys. Rev. D 84 (2011) 035016 [arXiv:1104.5239] [INSPIRE].ADSGoogle Scholar
  8. [8]
    B. Batell, J. Pradler and M. Spannowsky, Dark Matter from Minimal Flavor Violation, JHEP 08 (2011) 038 [arXiv:1105.1781] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    J.F. Kamenik and J. Zupan, Discovering Dark Matter Through Flavor Violation at the LHC, Phys. Rev. D 84 (2011) 111502 [arXiv:1107.0623] [INSPIRE].ADSGoogle Scholar
  10. [10]
    P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored Dark Matter and Its Implications for Direct Detection and Colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].ADSGoogle Scholar
  11. [11]
    P. Agrawal, B. Batell, D. Hooper and T. Lin, Flavored Dark Matter and the Galactic Center Gamma-Ray Excess, Phys. Rev. D 90 (2014) 063512 [arXiv:1404.1373] [INSPIRE].ADSGoogle Scholar
  12. [12]
    P. Agrawal, M. Blanke and K. Gemmler, Flavored dark matter beyond Minimal Flavor Violation, JHEP 10 (2014) 72 [arXiv:1405.6709] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    L. Calibbi, A. Crivellin and B. Zaldívar, Flavor portal to dark matter, Phys. Rev. D 92 (2015) 016004 [arXiv:1501.07268] [INSPIRE].ADSGoogle Scholar
  14. [14]
    F. Bishara, A. Greljo, J.F. Kamenik, E. Stamou and J. Zupan, Dark Matter and Gauged Flavor Symmetries, JHEP 12 (2015) 130 [arXiv:1505.03862] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Cheung, K. Mawatari, E. Senaha, P.-Y. Tseng and T.-C. Yuan, The Top Window for dark matter, JHEP 10 (2010) 081 [arXiv:1009.0618] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    U. Haisch, F. Kahlhoefer and J. Unwin, The impact of heavy-quark loops on LHC dark matter searches, JHEP 07 (2013) 125 [arXiv:1208.4605] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Lin, E.W. Kolb and L.-T. Wang, Probing dark matter couplings to top and bottom quarks at the LHC, Phys. Rev. D 88 (2013) 063510 [arXiv:1303.6638] [INSPIRE].ADSGoogle Scholar
  18. [18]
    ATLAS collaboration, Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 92 [arXiv:1410.4031] [INSPIRE].
  19. [19]
    CMS collaboration, Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2015) 121 [arXiv:1504.03198] [INSPIRE].
  20. [20]
    M.R. Buckley, D. Feld and D. Goncalves, Scalar Simplified Models for Dark Matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].ADSGoogle Scholar
  21. [21]
    U. Haisch and E. Re, Simplified dark matter top-quark interactions at the LHC, JHEP 06 (2015) 078 [arXiv:1503.00691] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    O. Mattelaer and E. Vryonidou, Dark matter production through loop-induced processes at the LHC: the s-channel mediator case, Eur. Phys. J. C 75 (2015) 436 [arXiv:1508.00564] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Backović, M. Krämer, F. Maltoni, A. Martini, K. Mawatari and M. Pellen, Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators, Eur. Phys. J. C 75 (2015) 482 [arXiv:1508.05327] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    B. Fuks, P. Richardson and A. Wilcock, Studying the sensitivity of monotop probes to compressed supersymmetric scenarios at the LHC, Eur. Phys. J. C 75 (2015) 308 [arXiv:1408.3634] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    ATLAS collaboration, Search for invisible particles produced in association with single-top-quarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 79 [arXiv:1410.5404] [INSPIRE].
  26. [26]
    CMS collaboration, Search for Monotop Signatures in Proton-Proton Collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 114 (2015) 101801 [arXiv:1410.1149] [INSPIRE].
  27. [27]
    J. Wang, C.S. Li, D.Y. Shao and H. Zhang, Search for the signal of monotop production at the early LHC, Phys. Rev. D 86 (2012) 034008 [arXiv:1109.5963] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Kumar, J.N. Ng, A. Spray and P.T. Winslow, Tracking down the top quark forward-backward asymmetry with monotops, Phys. Rev. D 88 (2013) 075012 [arXiv:1308.3712] [INSPIRE].ADSGoogle Scholar
  29. [29]
    E. Alvarez, E.C. Leskow, J. Drobnak and J.F. Kamenik, Leptonic Monotops at LHC, Phys. Rev. D 89 (2014) 014016 [arXiv:1310.7600] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J.-L. Agram, J. Andrea, M. Buttignol, E. Conte and B. Fuks, Monotop phenomenology at the Large Hadron Collider, Phys. Rev. D 89 (2014) 014028 [arXiv:1311.6478] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J.N. Ng and A. de la Puente, Probing Radiative Neutrino Mass Generation through Monotop Production, Phys. Rev. D 90 (2014) 095018 [arXiv:1404.1415] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R. Allahverdi, M. Dalchenko, B. Dutta, Y. Gao and T. Kamon, Distinguishing Standard Model Extensions using Monotop Chirality at the LHC, arXiv:1507.02271 [INSPIRE].
  33. [33]
    A. Rajaraman, J. Smolinsky and P. Tanedo, On-Shell Mediators and Top-Charm Dark Matter Models for the Fermi-LAT Galactic Center Excess, arXiv:1503.05919 [INSPIRE].
  34. [34]
    D. Hooper and L. Goodenough, Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Murgia, Observation of the high energy gamma-ray emission towards the galactic center, Fifth FERMI Symposium, Nagoya Japan, 20–24 October 2014.Google Scholar
  36. [36]
    Fermi-LAT collaboration, T.A. Porter and S. Murgia, Observations of High-Energy Gamma-Ray Emission Toward the Galactic Centre with the Fermi Large Area Telescope, arXiv:1507.04688 [INSPIRE].
  37. [37]
    R. Bartels, S. Krishnamurthy and C. Weniger, Strong support for the millisecond pulsar origin of the Galactic center GeV excess, Phys. Rev. Lett. 116 (2016) 051102 [arXiv:1506.05104] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    S.K. Lee, M. Lisanti, B.R. Safdi, T.R. Slatyer and W. Xue, Evidence for Unresolved Gamma-Ray Point Sources in the Inner Galaxy, Phys. Rev. Lett. 116 (2016) 051103 [arXiv:1506.05124] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    D. Gaggero, M. Taoso, A. Urbano, M. Valli and P. Ullio, Towards a realistic astrophysical interpretation of the gamma-ray Galactic center excess, JCAP 12 (2015) 056 [arXiv:1507.06129] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K.N. Abazajian and R.E. Keeley, A Bright Gamma-ray Galactic Center Excess and Dark Dwarfs: Strong Tension for Dark Matter Annihilation Despite Milky Way Halo Profile and Diffuse Emission Uncertainties, arXiv:1510.06424 [INSPIRE].
  41. [41]
    L.-B. Jia, Search for pseudoscalar-mediated WIMPs in tc transitions with missing energy, Phys. Rev. D 92 (2015) 074006 [arXiv:1506.05293] [INSPIRE].ADSGoogle Scholar
  42. [42]
    Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E.M. Wagner, Forward-Backward Asymmetry of Top Quark Pair Production, Phys. Rev. D 81 (2010) 114004 [arXiv:1003.3461] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Ciuchini, E. Franco, D. Guadagnoli, V. Lubicz, M. Pierini, V. Porretti et al., \( D\hbox{-} \overline{D} \) mixing and new physics: General considerations and constraints on the MSSM, Phys. Lett. B 655 (2007) 162 [hep-ph/0703204] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D0 collaboration, V.M. Abazov et al., An Improved determination of the width of the top quark, Phys. Rev. D 85 (2012) 091104 [arXiv:1201.4156] [INSPIRE].
  45. [45]
    CDF collaboration, T.A. Aaltonen et al., Direct Measurement of the Total Decay Width of the Top Quark, Phys. Rev. Lett. 111 (2013) 202001 [arXiv:1308.4050] [INSPIRE].
  46. [46]
    CMS collaboration, Search for Flavor-Changing Neutral Currents in Top-Quark Decays tZq in pp Collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 112 (2014) 171802 [arXiv:1312.4194] [INSPIRE].
  47. [47]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    CDF collaboration, T. Aaltonen et al., Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].
  49. [49]
    D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].
  50. [50]
    J. Cao, L. Wang, L. Wu and J.M. Yang, Top quark forward-backward asymmetry, FCNC decays and like-sign pair production as a joint probe of new physics, Phys. Rev. D 84 (2011) 074001 [arXiv:1101.4456] [INSPIRE].ADSGoogle Scholar
  51. [51]
    E.L. Berger, Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Top Quark Forward-Backward Asymmetry and Same-Sign Top Quark Pairs, Phys. Rev. Lett. 106 (2011) 201801 [arXiv:1101.5625] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    CMS collaboration, Search for Same-Sign Top-Quark Pair Production at \( \sqrt{s}=7 \) TeV and Limits on Flavour Changing Neutral Currents in the Top Sector, JHEP 08 (2011) 005 [arXiv:1106.2142] [INSPIRE].
  53. [53]
    ATLAS collaboration, Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 04 (2012) 069 [arXiv:1202.5520] [INSPIRE].
  54. [54]
    S. Jung, A. Pierce and J.D. Wells, Top quark asymmetry from a non-Abelian horizontal symmetry, Phys. Rev. D 83 (2011) 114039 [arXiv:1103.4835] [INSPIRE].ADSGoogle Scholar
  55. [55]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on Light Majorana dark Matter from Colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the Frontier of Dark Matter Direct Detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing Energy Signatures of Dark Matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].ADSGoogle Scholar
  58. [58]
    I.M. Shoemaker and L. Vecchi, Unitarity and Monojet Bounds on Models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].ADSGoogle Scholar
  59. [59]
    G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Phys. Lett. B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond Effective Field Theory for Dark Matter Searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    N.D. Christensen et al., A Comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman Diagram Computations, Comput. Phys. Commun. 183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  67. [67]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  68. [68]
    M. Backovic, K. Kong and M. McCaskey, MadDM v.1.0: Computation of Dark Matter Relic Abundance Using MadGraph5, Physics of the Dark Universe 5-6 (2014) 18 [arXiv:1308.4955] [INSPIRE].
  69. [69]
    M. Backović, A. Martini, O. Mattelaer, K. Kong and G. Mohlabeng, Direct Detection of Dark Matter with MadDM v.2.0, Phys. Dark Univ. 9-10 (2015) 37 [arXiv:1505.04190] [INSPIRE].CrossRefGoogle Scholar
  70. [70]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  73. [73]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
  76. [76]
    M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    CMS collaboration, Identification of b-quark jets with the CMS experiment, 2013 JINST 8 P04013 [arXiv:1211.4462] [INSPIRE].
  78. [78]
    CMS collaboration, Measurement of the tt production cross section in the dilepton channel in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 02 (2014) 024 [Erratum ibid. 1402 (2014) 102] [arXiv:1312.7582] [INSPIRE].
  79. [79]
    ATLAS collaboration, Performance and Calibration of the JetFitterCharm Algorithm for c-Jet Identification, ATL-PHYS-PUB-2015-001 (2015).
  80. [80]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  81. [81]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  82. [82]
    M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].
  83. [83]
    AMS-02 collaboration, AMS Days at CERN, Geneva Switzerland, 15–17 April 2015.Google Scholar
  84. [84]
    G. Giesen et al., AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter, JCAP 09 (2015) 023 [arXiv:1504.04276] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    H.-B. Jin, Y.-L. Wu and Y.-F. Zhou, Upper limits on dark matter annihilation cross sections from the first AMS-02 antiproton data, Phys. Rev. D 92 (2015) 055027 [arXiv:1504.04604] [INSPIRE].ADSGoogle Scholar
  86. [86]
    R. Kappl, A. Reinert and M.W. Winkler, AMS-02 Antiprotons Reloaded, JCAP 10 (2015) 034 [arXiv:1506.04145] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    A. Berlin, D. Hooper and S.D. McDermott, Simplified Dark Matter Models for the Galactic Center Gamma-Ray Excess, Phys. Rev. D 89 (2014) 115022 [arXiv:1404.0022] [INSPIRE].ADSGoogle Scholar
  88. [88]
    A. Alves, S. Profumo, F.S. Queiroz and W. Shepherd, Effective field theory approach to the Galactic Center gamma-ray excess, Phys. Rev. D 90 (2014) 115003 [arXiv:1403.5027] [INSPIRE].ADSGoogle Scholar
  89. [89]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].CrossRefADSGoogle Scholar
  90. [90]
    P. Ko, Y. Omura and C. Yu, Top Forward-Backward Asymmetry and the CDF Wjj Excess in Leptophobic U(1)′ Flavor Models, Phys. Rev. D 85 (2012) 115010 [arXiv:1108.0350] [INSPIRE].ADSGoogle Scholar
  91. [91]
    P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  92. [92]
    Y. Mambrini, The ZZ’ kinetic mixing in the light of the recent direct and indirect dark matter searches, JCAP 07 (2011) 009 [arXiv:1104.4799] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    E. Dudas, L. Heurtier, Y. Mambrini and B. Zaldivar, Extra U(1), effective operators, anomalies and dark matter, JHEP 11 (2013) 083 [arXiv:1307.0005] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    ATLAS collaboration, Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 105 [arXiv:1505.04306] [INSPIRE].
  95. [95]
    CMS collaboration, Inclusive search for a vector-like T quark with charge \( \frac{2}{3} \) in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 729 (2014) 149 [arXiv:1311.7667] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Jorgen D’Hondt
    • 1
  • Alberto Mariotti
    • 1
  • Kentarou Mawatari
    • 1
    • 2
  • Seth Moortgat
    • 1
  • Pantelis Tziveloglou
    • 1
  • Gerrit Van Onsem
    • 1
    • 3
  1. 1.Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, International Solvay InstitutesBrusselsBelgium
  2. 2.Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3GrenobleFrance
  3. 3.DESYHamburgGermany

Personalised recommendations