Testing the 2-TeV resonance with trileptons

Open Access
Regular Article - Theoretical Physics

Abstract

The CMS collaboration has reported a 2.8σ excess in the search of the SU(2)R gauge bosons decaying through right-handed neutrinos into the two electron plus two jets (eejj) final states. This can be explained if the SU(2)R charged gauge bosons WR± have a mass of around 2 TeV and a right-handed neutrino with a mass of \( \mathcal{O} \)(1) TeV mainly decays to electron. Indeed, recent results in several other experiments, especially that from the ATLAS diboson resonance search, also indicate signatures of such a 2 TeV gauge boson. However, a lack of the same-sign electron events in the CMS eejj search challenges the interpretation of the right-handed neutrino as a Majorana fermion. Taking this situation into account, in this paper, we consider a possibility of explaining the CMS eejj excess based on the SU(2)L ⊗ SU(2)R ⊗ U(1)BL gauge theory with pseudo-Dirac neutrinos. We find that both the CMS excess events and the ATLAS diboson anomaly can actually be explained in this framework without conflicting with the current experimental bounds. This setup in general allows sizable left-right mixing in both the charged gauge boson and neutrino sectors, which enables us to probe this model through the trilepton plus missing-energy search at the LHC. It turns out that the number of events in this channel predicted in our model is in good agreement with that observed by the CMS collaboration. We also discuss prospects for testing this model at the LHC Run-II experiments.

Keywords

Phenomenological Models 

References

  1. [1]
    CMS collaboration, Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 74 (2014) 3149 [arXiv:1407.3683] [INSPIRE].
  2. [2]
    Y. Bai and J. Berger, Coloron-assisted leptoquarks at the LHC, Phys. Lett. B 746 (2015) 32 [arXiv:1407.4466] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    B.A. Dobrescu and A. Martin, Interpretations of anomalous LHC events with electrons and jets, Phys. Rev. D 91 (2015) 035019 [arXiv:1408.1082] [INSPIRE].ADSGoogle Scholar
  4. [4]
    B. Allanach, S. Biswas, S. Mondal and M. Mitra, Explaining a CMS eejj excess With-parity violating supersymmetry and implications for neutrinoless double beta decay, Phys. Rev. D 91 (2015) 011702 [arXiv:1408.5439] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Biswas, D. Chowdhury, S. Han and S.J. Lee, Explaining the lepton non-universality at the LHCb and CMS within a unified framework, JHEP 02 (2015) 142 [arXiv:1409.0882] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    B.C. Allanach, S. Biswas, S. Mondal and M. Mitra, Resonant slepton production yields CMS eejj and ep T jj excesses, Phys. Rev. D 91 (2015) 015011 [arXiv:1410.5947] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Dhuria, C. Hati, R. Rangarajan and U. Sarkar, Explaining the CMS eejj and E missing p T jj excess and leptogenesis in superstring inspired E 6 models, Phys. Rev. D 91 (2015) 055010 [arXiv:1501.04815] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M.E. Krauss and W. Porod, Is the CMS eejj excess a hint for light supersymmetry?, Phys. Rev. D 92 (2015) 055019 [arXiv:1507.04349] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Dhuria, C. Hati and U. Sarkar, Explaining the CMS excesses, baryogenesis and neutrino masses in E 6 motivated U (1)N model, Phys. Rev. D 93 (2016) 015001 [arXiv:1507.08297] [INSPIRE].ADSGoogle Scholar
  10. [10]
    F.F. Deppisch, T.E. Gonzalo, S. Patra, N. Sahu and U. Sarkar, Signal of right-handed charged gauge bosons at the LHC?, Phys. Rev. D 90 (2014) 053014 [arXiv:1407.5384] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Heikinheimo, M. Raidal and C. Spethmann, Testing right-handed currents at the LHC, Eur. Phys. J. C 74 (2014) 3107 [arXiv:1407.6908] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    J.A. Aguilar-Saavedra and F.R. Joaquim, Closer look at the possible CMS signal of a new gauge boson, Phys. Rev. D 90 (2014) 115010 [arXiv:1408.2456] [INSPIRE].ADSGoogle Scholar
  13. [13]
    F.F. Deppisch, T.E. Gonzalo, S. Patra, N. Sahu and U. Sarkar, Double beta decay, lepton flavor violation and collider signatures of left-right symmetric models with spontaneous D-parity breaking, Phys. Rev. D 91 (2015) 015018 [arXiv:1410.6427] [INSPIRE].ADSGoogle Scholar
  14. [14]
    P. Coloma, B.A. Dobrescu and J. Lopez-Pavon, Right-handed neutrinos and the 2 TeV W boson, Phys. Rev. D 92 (2015) 115023 [arXiv:1508.04129] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T. Bandyopadhyay, B. Brahmachari and A. Raychaudhuri, Implications of the CMS search for W R on grand unification, JHEP 02 (2016) 023 [arXiv:1509.03232] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    J. Gluza and T. Jelinski, Heavy neutrinos and the pplljj CMS data, Phys. Lett. B 748 (2015) 125 [arXiv:1504.05568] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B.A. Dobrescu and Z. Liu, W boson near 2 TeV: predictions for run 2 of the LHC, Phys. Rev. Lett. 115 (2015) 211802 [arXiv:1506.06736] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P.S. Bhupal Dev and R.N. Mohapatra, Unified explanation of the eejj, diboson and dijet resonances at the LHC, Phys. Rev. Lett. 115 (2015) 181803 [arXiv:1508.02277] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F.F. Deppisch et al., Reconciling the 2 TeV excesses at the LHC in a linear seesaw left-right model, Phys. Rev. D 93 (2016) 013011 [arXiv:1508.05940] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R.L. Awasthi, P.S.B. Dev and M. Mitra, Implications of the diboson excess for neutrinoless double beta decay and lepton flavor violation in TeV scale left right symmetric model, Phys. Rev. D 93 (2016) 011701 [arXiv:1509.05387] [INSPIRE].ADSGoogle Scholar
  21. [21]
    B.A. Dobrescu and P.J. Fox, Signals of a 2 TeV W boson and a heavier Z boson, arXiv:1511.02148 [INSPIRE].
  22. [22]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  23. [23]
    R.N. Mohapatra and J.C. Pati, Left-right gauge symmetry and an isoconjugate model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].ADSGoogle Scholar
  24. [24]
    R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Hisano, N. Nagata and Y. Omura, Interpretations of the ATLAS diboson resonances, Phys. Rev. D 92 (2015) 055001 [arXiv:1506.03931] [INSPIRE].ADSGoogle Scholar
  27. [27]
    K. Cheung, W.-Y. Keung, P.-Y. Tseng and T.-C. Yuan, Interpretations of the ATLAS diboson anomaly, Phys. Lett. B 751 (2015) 188 [arXiv:1506.06064] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Y. Gao, T. Ghosh, K. Sinha and J.-H. Yu, SU(2) × SU(2) × U(1) interpretations of the diboson and Wh excesses, Phys. Rev. D 92 (2015) 055030 [arXiv:1506.07511] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Brehmer, J. Hewett, J. Kopp, T. Rizzo and J. Tattersall, Symmetry restored in dibosons at the LHC?, JHEP 10 (2015) 182 [arXiv:1507.00013] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Q.-H. Cao, B. Yan and D.-M. Zhang, Simple non-abelian extensions of the standard model gauge group and the diboson excesses at the LHC, Phys. Rev. D 92 (2015) 095025 [arXiv:1507.00268] [INSPIRE].ADSGoogle Scholar
  31. [31]
    B.A. Dobrescu and Z. Liu, Heavy Higgs bosons and the 2 TeV W boson, JHEP 10 (2015) 118 [arXiv:1507.01923] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J.H. Collins and W.H. Ng, A 2 TeV W R , supersymmetry and the Higgs mass, JHEP 01 (2016) 159 [arXiv:1510.08083] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    K. Das, T. Li, S. Nandi and S.K. Rai, Diboson excesses in an anomaly free leptophobic left-right model, Phys. Rev. D 93 (2016) 016006 [arXiv:1512.00190] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.A. Aguilar-Saavedra and F.R. Joaquim, Multiboson production in W decays, JHEP 01 (2016) 183 [arXiv:1512.00396] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    M. Hirsch, M.E. Krauss, T. Opferkuch, W. Porod and F. Staub, A constrained supersymmetric left-right model, arXiv:1512.00472 [INSPIRE].
  36. [36]
    J.L. Evans, N. Nagata, K.A. Olive and J. Zheng, The ATLAS diboson resonance in non-supersymmetric SO(10), JHEP 02 (2016) 120 [arXiv:1512.02184] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    J. Brehmer et al., The diboson excess: experimental situation and classification of explanations; a Les Houches pre-proceeding, arXiv:1512.04357 [INSPIRE].
  38. [38]
    A. Berlin, The diphoton and diboson excesses in a left-right symmetric theory of dark matter, arXiv:1601.01381 [INSPIRE].
  39. [39]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  40. [40]
    CMS collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052009 [arXiv:1501.04198] [INSPIRE].
  41. [41]
    CMS Collaboration, Search for massive WH resonances decaying to \( \ell \nu \mathrm{b}\overline{\mathrm{b}} \) final state in the boosted regime at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-14-010 (2014).
  42. [42]
    ATLAS collaboration, Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 07 (2015) 162 [arXiv:1506.06020] [INSPIRE].
  43. [43]
    CMS collaboration, Search for heavy Majorana neutrinos in e ± e ± + jets and e ± μ ± + jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-EXO-14-014 (2014).
  44. [44]
    CMS collaboration, Search for heavy Majorana neutrinos in μ ± μ ±+ jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 748 (2015) 144 [arXiv:1501.05566] [INSPIRE].
  45. [45]
    R.N. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  47. [47]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95.Google Scholar
  49. [49]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  50. [50]
    S.L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 59 (1980) 687.Google Scholar
  51. [51]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].
  53. [53]
    J. Kersten and A. Yu. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].
  54. [54]
    Z.-z. Xing, Naturalness and testability of TeV seesaw mechanisms, Prog. Theor. Phys. Suppl. 180 (2009) 112 [arXiv:0905.3903] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  55. [55]
    X.-G. He, S. Oh, J. Tandean and C.-C. Wen, Large mixing of light and heavy neutrinos in seesaw models and the LHC, Phys. Rev. D 80 (2009) 073012 [arXiv:0907.1607] [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Ibarra, E. Molinaro and S.T. Petcov, TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)0ν -decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  57. [57]
    F.F. Deppisch and A. Pilaftsis, Lepton flavour violation and θ 13 in minimal resonant leptogenesis, Phys. Rev. D 83 (2011) 076007 [arXiv:1012.1834] [INSPIRE].ADSGoogle Scholar
  58. [58]
    C.-H. Lee, P.S. Bhupal Dev and R.N. Mohapatra, Natural TeV-scale left-right seesaw mechanism for neutrinos and experimental tests, Phys. Rev. D 88 (2013) 093010 [arXiv:1309.0774] [INSPIRE].ADSGoogle Scholar
  59. [59]
    P.S.B. Dev and R.N. Mohapatra, TeV scale inverse seesaw in SO(10) and leptonic non-unitarity effects, Phys. Rev. D 81 (2010) 013001 [arXiv:0910.3924] [INSPIRE].ADSGoogle Scholar
  60. [60]
    P.S. Bhupal Dev and R.N. Mohapatra, Electroweak symmetry breaking and proton decay in SO(10) SUSY-GUT with TeV W (R), Phys. Rev. D 82 (2010) 035014 [arXiv:1003.6102] [INSPIRE].ADSGoogle Scholar
  61. [61]
    R. Lal Awasthi and M.K. Parida, Inverse seesaw mechanism in nonsupersymmetric SO(10), proton lifetime, nonunitarity effects and a low-mass Z boson, Phys. Rev. D 86 (2012) 093004 [arXiv:1112.1826] [INSPIRE].ADSGoogle Scholar
  62. [62]
    H. Georgi, The state of the art-gauge theories, AIP Conf. Proc. 23 (1975) 575.ADSCrossRefGoogle Scholar
  63. [63]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  65. [65]
    F. del Aguila and J.A. Aguilar-Saavedra, Electroweak scale seesaw and heavy Dirac neutrino signals at LHC, Phys. Lett. B 672 (2009) 158 [arXiv:0809.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    F. del Aguila, J.A. Aguilar-Saavedra and J. de Blas, Trilepton signals: the golden channel for seesaw searches at LHC, Acta Phys. Polon. B 40 (2009) 2901 [arXiv:0910.2720] [INSPIRE].ADSGoogle Scholar
  67. [67]
    C.-Y. Chen and P.S.B. Dev, Multi-lepton collider signatures of heavy Dirac and Majorana neutrinos, Phys. Rev. D 85 (2012) 093018 [arXiv:1112.6419] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A. Das and N. Okada, Inverse seesaw neutrino signatures at the LHC and ILC, Phys. Rev. D 88 (2013) 113001 [arXiv:1207.3734] [INSPIRE].ADSGoogle Scholar
  69. [69]
    A. Das, P.S. Bhupal Dev and N. Okada, Direct bounds on electroweak scale pseudo-Dirac neutrinos from \( \sqrt{s}=8 \) TeV LHC data, Phys. Lett. B 735 (2014) 364 [arXiv:1405.0177] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Das and N. Okada, Improved bounds on the heavy neutrino productions at the LHC, Phys. Rev. D 93 (2016) 033003 [arXiv:1510.04790] [INSPIRE].ADSGoogle Scholar
  71. [71]
    CMS collaboration, Search for anomalous production of events with three or more leptons in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 90 (2014) 032006 [arXiv:1404.5801] [INSPIRE].
  72. [72]
    M.C. Gonzalez-Garcia and J.W.F. Valle, Fast decaying neutrinos and observable flavor violation in a new class of Majoron models, Phys. Lett. B 216 (1989) 360 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S.C. Park, K. Wang and T.T. Yanagida, Neutrino mass from a hidden world and its phenomenological implications, Phys. Lett. B 685 (2010) 309 [arXiv:0909.2937] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    C.S. Fong, R.N. Mohapatra and I. Sung, Majorana neutrinos from inverse seesaw in warped extra dimension, Phys. Lett. B 704 (2011) 171 [arXiv:1107.4086] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    E. Ma, Radiative inverse seesaw mechanism for nonzero neutrino mass, Phys. Rev. D 80 (2009) 013013 [arXiv:0904.4450] [INSPIRE].ADSGoogle Scholar
  76. [76]
    F. Bazzocchi, D.G. Cerdeno, C. Muñoz and J.W.F. Valle, Calculable inverse-seesaw neutrino masses in supersymmetry, Phys. Rev. D 81 (2010) 051701 [arXiv:0907.1262] [INSPIRE].ADSGoogle Scholar
  77. [77]
    S.C. Park and K. Wang, Inverse seesaw in supersymmetry, Phys. Lett. B 701 (2011) 107 [arXiv:1011.3621] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    S.S.C. Law and K.L. McDonald, Inverse seesaw and dark matter in models with exotic lepton triplets, Phys. Lett. B 713 (2012) 490 [arXiv:1204.2529] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    ATLAS collaboration, Search for new phenomena in the dilepton final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-070 (2015).
  80. [80]
    CMS collaboration, Search for a narrow resonance produced in 13 TeV pp collisions decaying to electron pair or muon pair final states, CMS-PAS-EXO-15-005 (2015).
  81. [81]
    Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in minimal left-right symmetric model and constraints on the right-handed scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  82. [82]
    A. Maiezza, M. Nemevšek, F. Nesti and G. Senjanović, Left-right symmetry at LHC, Phys. Rev. D 82 (2010) 055022 [arXiv:1005.5160] [INSPIRE].ADSGoogle Scholar
  83. [83]
    S. Bertolini, A. Maiezza and F. Nesti, Present and future K and B meson mixing constraints on TeV scale left-right symmetry, Phys. Rev. D 89 (2014) 095028 [arXiv:1403.7112] [INSPIRE].ADSGoogle Scholar
  84. [84]
    A. Ferroglia, C. Greub, A. Sirlin and Z. Zhang, Contributions of the W -boson propagator to μ and τ leptonic decay rates, Phys. Rev. D 88 (2013) 033012 [arXiv:1307.6900] [INSPIRE].ADSGoogle Scholar
  85. [85]
    CMS collaboration, Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 173 [arXiv:1405.1994] [INSPIRE].
  86. [86]
    ATLAS collaboration, Combination of searches for W W , W Z and ZZ resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 755 (2016) 285 [arXiv:1512.05099] [INSPIRE].
  87. [87]
    ATLAS collaboration, Search for W Z resonances in the fully leptonic channel using pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 737 (2014) 223 [arXiv:1406.4456] [INSPIRE].
  88. [88]
    ATLAS collaboration, Search for resonant diboson production in the ℓℓq q final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 69 [arXiv:1409.6190] [INSPIRE].
  89. [89]
    ATLAS collaboration, Search for production of W W/W Z resonances decaying to a lepton, neutrino and jets in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 209 [Erratum ibid. C 75 (2015) 370] [arXiv:1503.04677] [INSPIRE].
  90. [90]
    CMS collaboration, Search for massive resonances decaying into pairs of boosted bosons in semi-leptonic final states at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 174 [arXiv:1405.3447] [INSPIRE].
  91. [91]
    F. Dias et al., Combination of Run-1 exotic searches in diboson final states at the LHC, arXiv:1512.03371 [INSPIRE].
  92. [92]
    ATLAS collaboration, Search for diboson resonances in the ννqq final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-068 (2015).
  93. [93]
    ATLAS collaboration, Search for diboson resonances in the llqq final state in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-071 (2015).
  94. [94]
    ATLAS collaboration, Search for resonances with boson-tagged jets in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV collected with the ATLAS detector, ATLAS-CONF-2015-073 (2015).
  95. [95]
    ATLAS collaboration, Search for W W/W Z resonance production in the ℓνqq final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC,ATLAS-CONF-2015-075 (2015).
  96. [96]
    CMS collaboration, Search for massive resonances decaying into pairs of boosted W and Z bosons at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-002 (2015).
  97. [97]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    Q.-H. Cao, Z. Li, J.-H. Yu and C.P. Yuan, Discovery and identification of W and Z in SU(2) × SU(2) × U(1) models at the LHC, Phys. Rev. D 86 (2012) 095010 [arXiv:1205.3769] [INSPIRE].ADSGoogle Scholar
  99. [99]
    T. Jezo, M. Klasen, D.R. Lamprea, F. Lyonnet and I. Schienbein, NLO+NLL limits on W and Z gauge boson masses in general extensions of the Standard Model, JHEP 12 (2014) 092 [arXiv:1410.4692] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    ATLAS collaboration, Search for new phenomena in dijet mass and angular distributions from pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 754 (2016) 302 [arXiv:1512.01530] [INSPIRE].
  101. [101]
    CMS collaboration, Search for narrow resonances decaying to dijets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 116 (2016) 071801 [arXiv:1512.01224] [INSPIRE].
  102. [102]
    CMS collaboration, Search for W tb in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 02 (2016) 122 [arXiv:1509.06051] [INSPIRE].
  103. [103]
    M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    K. Hsieh, K. Schmitz, J.-H. Yu and C.P. Yuan, Global analysis of general SU(2) × SU(2) × U(1) models with precision data, Phys. Rev. D 82 (2010) 035011 [arXiv:1003.3482] [INSPIRE].ADSGoogle Scholar
  105. [105]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  106. [106]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  107. [107]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  108. [108]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  109. [109]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of AlabamaTuscaloosaU.S.A.
  2. 2.William I. Fine Theoretical Physics Institute, School of Physics and AstronomyUniversity of MinnesotaMinneapolisU.S.A.

Personalised recommendations