Advertisement

S 1 /T 2 compactifications of 6d \( \mathcal{N}=\left(1,\;0\right) \) theories and brane webs

  • Kantaro Ohmori
  • Hiroyuki Shimizu
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the circle and torus compactification of a certain subclass of 6d \( \mathcal{N}=\left(1,\;0\right) \) SCFTs which are Higgsable to the higher rank E-string theories. Using the T-duality between Type I’ and Type IIB, we found that the S 1 compactification of the theories can be realized by 5-brane webs describing the 5d uplifting of a specified class S theory, generalizing the result by Benini, Benvenuti and Tachikawa. We checked the above result by calculating conformal and flavor central charges of the 4d torus compactified theory both from the tensor branch structure of the 6d theory and from the predicted class S description.

Keywords

D-branes Conformal Field Models in String Theory String Duality Anomalies in Field and String Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    J.J. Heckman, D.R. Morrison and C. Vafa, On the Classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 1506 (2015) 017] [arXiv:1312.5746] [INSPIRE].
  3. [3]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d \( \mathcal{N}=\left(1,\;0\right) \) theories on T 2 and class S theories: Part I, JHEP 07 (2015) 014 [arXiv:1503.06217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, 6d \( \mathcal{N}=\left(1,\;0\right) \) theories on S 1 /T 2 and class S theories: part II, JHEP 12 (2015) 131 [arXiv:1508.00915] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Del Zotto, C. Vafa and D. Xie, Geometric engineering, mirror symmetry and \( 6{\mathrm{d}}_{\left(1,0\right)}\to 4{\mathrm{d}}_{\left(\mathcal{N}=2\right)} \), JHEP 11 (2015) 123 [arXiv:1504.08348] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J.A. Minahan and D. Nemeschansky, Superconformal fixed points with E(n) global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Del Zotto, J.J. Heckman, A. Tomasiello and C. Vafa, 6d Conformal Matter, JHEP 02 (2015) 054 [arXiv:1407.6359] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  13. [13]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].
  14. [14]
    Y. Tachikawa, A review of the T N theory and its cousins, PTEP 2015 (2015) 11B102 [arXiv:1504.01481] [INSPIRE].
  15. [15]
    D. Gaiotto and S.S. Razamat, Exceptional Indices, JHEP 05 (2012) 145 [arXiv:1203.5517] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    O. Chacaltana and J. Distler, Tinkertoys for Gaiotto Duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d N = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    G. Zafrir, Brane webs, 5d gauge theories and 6d \( \mathcal{N}=\left(1,0\right) \) SCFT’s, JHEP 12 (2015) 157 [arXiv:1509.02016] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    H. Hayashi, S.-S. Kim, K. Lee and F. Yagi, 6d SCFTs, 5d Dualities and Tao Web Diagrams, arXiv:1509.03300 [INSPIRE].
  20. [20]
    I. Brunner and A. Karch, Branes and six-dimensional fixed points, Phys. Lett. B 409 (1997) 109 [hep-th/9705022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    E. Gorbatov, V.S. Kaplunovsky, J. Sonnenschein, S. Theisen and S. Yankielowicz, On heterotic orbifolds, M-theory and type-I-prime brane engineering, JHEP 05 (2002) 015 [hep-th/0108135] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    D. Gaiotto and A. Tomasiello, Holography for (1, 0) theories in six dimensions, JHEP 12 (2014) 003 [arXiv:1404.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering the symmetries on [p, q] seven-branes: Beyond the Kodaira classification, Adv. Theor. Math. Phys. 3 (1999) 1785 [hep-th/9812028] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    O. DeWolfe, Affine Lie algebras, string junctions and seven-branes, Nucl. Phys. B 550 (1999) 622 [hep-th/9809026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new 5d description of 6d D-type minimal conformal matter, JHEP 08 (2015) 097 [arXiv:1505.04439] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    S.-S. Kim, M. Taki and F. Yagi, Tao Probing the End of the World, PTEP 2015 (2015) 083B02 [arXiv:1504.03672] [INSPIRE].
  32. [32]
    V. Sadov, Generalized Green-Schwarz mechanism in F-theory, Phys. Lett. B 388 (1996) 45 [hep-th/9606008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    O. Bergman and G. Zafrir, 5d fixed points from brane webs and O7-planes, JHEP 12 (2015) 163 [arXiv:1507.03860] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations