Advertisement

Non-standard interactions in propagation at the Deep Underground Neutrino Experiment

  • Pilar Coloma
Open Access
Regular Article - Theoretical Physics

Abstract

We study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ε\( \mathcal{O} \)(0.05 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.

Keywords

Beyond Standard Model Neutrino Physics CP violation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.B. Gavela, D. Hernandez, T. Ota and W. Winter, Large gauge invariant non-standard neutrino interactions, Phys. Rev. D 79 (2009) 013007 [arXiv:0809.3451] [INSPIRE].ADSGoogle Scholar
  3. [3]
    M.B. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal flavour seesaw models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R. Alonso et al., Summary report of MINSIS workshop in Madrid, arXiv:1009.0476 [INSPIRE].
  5. [5]
    nuSTORM collaboration, D. Adey et al., nuSTORM — neutrinos from STORed Muons: proposal to the Fermilab PAC, arXiv:1308.6822 [INSPIRE].
  6. [6]
    ISS Physics Working Group collaboration, A. Bandyopadhyay, Physics at a future neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [INSPIRE].
  7. [7]
    A.N. Khan, D.W. McKay and F. Tahir, Sensitivity of medium-baseline reactor neutrino mass-hierarchy experiments to nonstandard interactions, Phys. Rev. D 88 (2013) 113006 [arXiv:1305.4350] [INSPIRE].ADSGoogle Scholar
  8. [8]
    T. Ohlsson, H. Zhang and S. Zhou, Nonstandard interaction effects on neutrino parameters at medium-baseline reactor antineutrino experiments, Phys. Lett. B 728 (2014) 148 [arXiv:1310.5917] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    I. Girardi, D. Meloni and S.T. Petcov, The Daya Bay and T2K results on sin2 2θ 13 and non-standard neutrino interactions, Nucl. Phys. B 886 (2014) 31 [arXiv:1405.0416] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Di Iura, I. Girardi and D. Meloni, Probing new physics scenarios in accelerator and reactor neutrino experiments, J. Phys. G 42 (2015) 065003 [arXiv:1411.5330] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.K. Agarwalla, P. Bagchi, D.V. Forero and M. Tórtola, Probing non-standard interactions at Daya Bay, JHEP 07 (2015) 060 [arXiv:1412.1064] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Blennow, S. Choubey, T. Ohlsson and S.K. Raut, Exploring source and detector non-standard neutrino interactions at ESSνSB, JHEP 09 (2015) 096 [arXiv:1507.02868] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Choubey, A. Ghosh, T. Ohlsson and D. Tiwari, Neutrino physics with non-standard interactions at INO, JHEP 12 (2015) 126 [arXiv:1507.02211] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Choubey and T. Ohlsson, Bounds on non-standard neutrino interactions using PINGU, Phys. Lett. B 739 (2014) 357 [arXiv:1410.0410] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. Ohlsson, H. Zhang and S. Zhou, Effects of nonstandard neutrino interactions at PINGU, Phys. Rev. D 88 (2013) 013001 [arXiv:1303.6130] [INSPIRE].ADSGoogle Scholar
  16. [16]
    I. Mocioiu and W. Wright, Non-standard neutrino interactions in the mu-tau sector, Nucl. Phys. B 893 (2015) 376 [arXiv:1410.6193] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    CAPTAIN collaboration, H. Berns et al., The CAPTAIN detector and physics program, in Community summer study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis MN U.S.A. July 29-August 6 2013 [arXiv:1309.1740] [INSPIRE].
  18. [18]
    MINERνA collaboration, L. Fields, CCQE results from MINERνA, AIP Conf. Proc. 1663 (2015) 080006 [INSPIRE].
  19. [19]
    ArgoNeuT and MicroBooNE collaborations, A.M. Szelc, Recent results from ArgoNeuT and status of MicroBooNE, Nucl. Part. Phys. Proc. 265-266 (2015) 208 [INSPIRE].
  20. [20]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) conceptual design report volume 2: the physics program for DUNE at LBNF, arXiv:1512.06148 [INSPIRE].
  21. [21]
    T2K collaboration, K. Abe et al., Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 × 1020 protons on target, Phys. Rev. D 91 (2015) 072010 [arXiv:1502.01550] [INSPIRE].
  22. [22]
    NOνA collaboration, R.B. Patterson, The NOνA experiment: status and outlook, arXiv:1209.0716 [INSPIRE].
  23. [23]
    Hyper-Kamiokande proto- collaboration, K. Abe et al., Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, Prog. Theor. Exp. Phys. 2015 (2015) 053C02 [arXiv:1502.05199] [INSPIRE].
  24. [24]
    P. Huber, T. Schwetz and J.W.F. Valle, Confusing nonstandard neutrino interactions with oscillations at a neutrino factory, Phys. Rev. D 66 (2002) 013006 [hep-ph/0202048] [INSPIRE].
  25. [25]
    J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007 [arXiv:0708.0152] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Kopp, P.A.N. Machado and S.J. Parke, Interpretation of MINOS data in terms of non-standard neutrino interactions, Phys. Rev. D 82 (2010) 113002 [arXiv:1009.0014] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Kopp, M. Lindner and T. Ota, Discovery reach for non-standard interactions in a neutrino factory, Phys. Rev. D 76 (2007) 013001 [hep-ph/0702269] [INSPIRE].
  28. [28]
    M. Blennow, T. Ohlsson and J. Skrotzki, Effects of non-standard interactions in the MINOS experiment, Phys. Lett. B 660 (2008) 522 [hep-ph/0702059] [INSPIRE].
  29. [29]
    M. Blennow, D. Meloni, T. Ohlsson, F. Terranova and M. Westerberg, Non-standard interactions using the OPERA experiment, Eur. Phys. J. C 56 (2008) 529 [arXiv:0804.2744] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Kopp, T. Ota and W. Winter, Neutrino factory optimization for non-standard interactions, Phys. Rev. D 78 (2008) 053007 [arXiv:0804.2261] [INSPIRE].ADSGoogle Scholar
  31. [31]
    D. Meloni, T. Ohlsson, W. Winter and H. Zhang, Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory, JHEP 04 (2010) 041 [arXiv:0912.2735] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    P. Coloma, A. Donini, J. Lopez-Pavon and H. Minakata, Non-standard interactions at a neutrino factory: correlations and CP-violation, JHEP 08 (2011) 036 [arXiv:1105.5936] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    O.G. Miranda and H. Nunokawa, Non standard neutrino interactions: current status and future prospects, New J. Phys. 17 (2015) 095002 [arXiv:1505.06254] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P. Huber and J. Kopp, Two experiments for the price of one? The role of the second oscillation maximum in long baseline neutrino experiments, JHEP 03 (2011) 013 [Erratum ibid. 05 (2011) 024] [arXiv:1010.3706] [INSPIRE].
  36. [36]
    A. Friedland and I.M. Shoemaker, Searching for novel neutrino interactions at NOνA and beyond in light of large θ 13, arXiv:1207.6642 [INSPIRE].
  37. [37]
    Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].
  38. [38]
    RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].
  39. [39]
    Double CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].
  40. [40]
    T2K collaboration, K. Abe et al., Neutrino oscillation physics potential of the T2K experiment, Prog. Theor. Exp. Phys. 2015 (2015) 043C01 [arXiv:1409.7469] [INSPIRE].
  41. [41]
    P. Langacker and D. London, Lepton number violation and massless nonorthogonal neutrinos, Phys. Rev. D 38 (1988) 907 [INSPIRE].ADSGoogle Scholar
  42. [42]
    Z. Berezhiani and A. Rossi, Limits on the nonstandard interactions of neutrinos from e + e colliders, Phys. Lett. B 535 (2002) 207 [hep-ph/0111137] [INSPIRE].
  43. [43]
    S. Davidson, C. Pena-Garay, N. Rius and A. Santamaria, Present and future bounds on nonstandard neutrino interactions, JHEP 03 (2003) 011 [hep-ph/0302093] [INSPIRE].
  44. [44]
    S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-standard neutrino interactions with matter from physics beyond the standard model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    Y. Farzan, A model for large non-standard interactions of neutrinos leading to the LMA-dark solution, Phys. Lett. B 748 (2015) 311 [arXiv:1505.06906] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Friedland, M.L. Graesser, I.M. Shoemaker and L. Vecchi, Probing nonstandard standard model backgrounds with LHC monojets, Phys. Lett. B 714 (2012) 267 [arXiv:1111.5331] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    D.B. Franzosi, M.T. Frandsen and I.M. Shoemaker, New or ν missing energy? Discriminating dark matter from neutrino interactions at the LHC, arXiv:1507.07574 [INSPIRE].
  48. [48]
    J. Barranco, O.G. Miranda, C.A. Moura and J.W.F. Valle, Constraining non-standard interactions in ν e e or \( {\overline{\nu}}_ee \) scattering, Phys. Rev. D 73 (2006) 113001 [hep-ph/0512195] [INSPIRE].
  49. [49]
    C. Biggio, M. Blennow and E. Fernandez-Martinez, Loop bounds on non-standard neutrino interactions, JHEP 03 (2009) 139 [arXiv:0902.0607] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    C. Biggio, M. Blennow and E. Fernandez-Martinez, General bounds on non-standard neutrino interactions, JHEP 08 (2009) 090 [arXiv:0907.0097] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    O.G. Miranda, M.A. Tortola and J.W.F. Valle, Are solar neutrino oscillations robust?, JHEP 10 (2006) 008 [hep-ph/0406280] [INSPIRE].
  52. [52]
    F.J. Escrihuela, O.G. Miranda, M.A. Tortola and J.W.F. Valle, Constraining nonstandard neutrino-quark interactions with solar, reactor and accelerator data, Phys. Rev. D 80 (2009) 105009 [Erratum ibid. D 80 (2009) 129908] [arXiv:0907.2630] [INSPIRE].
  53. [53]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Testing matter effects in propagation of atmospheric and long-baseline neutrinos, JHEP 05 (2011) 075 [arXiv:1103.4365] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    M.C. Gonzalez-Garcia and M. Maltoni, Determination of matter potential from global analysis of neutrino oscillation data, JHEP 09 (2013) 152 [arXiv:1307.3092] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    T. Kikuchi, H. Minakata and S. Uchinami, Perturbation theory of neutrino oscillation with nonstandard neutrino interactions, JHEP 03 (2009) 114 [arXiv:0809.3312] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Friedland, C. Lunardini and C. Pena-Garay, Solar neutrinos as probes of neutrino matter interactions, Phys. Lett. B 594 (2004) 347 [hep-ph/0402266] [INSPIRE].
  58. [58]
    M. Blennow and E. Fernandez-Martinez, Neutrino oscillation parameter sampling with MonteCUBES, Comput. Phys. Commun. 181 (2010) 227 [arXiv:0903.3985] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
  60. [60]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
  61. [61]
    Super-Kamiokande collaboration, G. Mitsuka et al., Study of non-standard neutrino interactions with atmospheric neutrino data in Super-Kamiokande I and II, Phys. Rev. D 84 (2011) 113008 [arXiv:1109.1889] [INSPIRE].
  62. [62]
    LBNF letter of intent, submitted to the Fermilab PAC P-1062, U.S.A. December 2014.
  63. [63]
    LBNE collaboration, T. Akiri et al., The 2010 interim report of the Long-Baseline Neutrino Experiment collaboration physics working groups, arXiv:1110.6249 [INSPIRE].
  64. [64]
    M. Blennow, P. Coloma, A. Donini and E. Fernandez-Martinez, Gain fractions of future neutrino oscillation facilities over T2K and NOνA, JHEP 07 (2013) 159 [arXiv:1303.0003] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    T2K collaboration, K. Abe et al., T2K neutrino flux prediction, Phys. Rev. D 87 (2013) 012001 [Addendum ibid. D 87 (2013) 019902] [arXiv:1211.0469] [INSPIRE].
  66. [66]
    P. Coloma, P. Huber, J. Kopp and W. Winter, Systematic uncertainties in long-baseline neutrino oscillations for large θ 13, Phys. Rev. D 87 (2013) 033004 [arXiv:1209.5973] [INSPIRE].ADSGoogle Scholar
  67. [67]
    K. Abe et al., Letter of intent: the Hyper-Kamiokande experiment — detector design and physics potential, arXiv:1109.3262 [INSPIRE].
  68. [68]
    A.M. Dziewonski and D.L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M. Masud, A. Chatterjee and P. Mehta, Probing CP-violation signal at DUNE in presence of non-standard neutrino interactions, arXiv:1510.08261 [INSPIRE].
  70. [70]
    A. Friedland, C. Lunardini and M. Maltoni, Atmospheric neutrinos as probes of neutrino-matter interactions, Phys. Rev. D 70 (2004) 111301 [hep-ph/0408264] [INSPIRE].
  71. [71]
    A. Friedland and C. Lunardini, Two modes of searching for new neutrino interactions at MINOS, Phys. Rev. D 74 (2006) 033012 [hep-ph/0606101] [INSPIRE].
  72. [72]
    A. Friedland and C. Lunardini, A test of tau neutrino interactions with atmospheric neutrinos and K2K, Phys. Rev. D 72 (2005) 053009 [hep-ph/0506143] [INSPIRE].
  73. [73]
    A. de Gouvêa and K.J. Kelly, Non-standard neutrino interactions at DUNE, arXiv:1511.05562 [INSPIRE].
  74. [74]
    J. Elevant and T. Schwetz, On the determination of the leptonic CP phase, JHEP 09 (2015) 016 [arXiv:1506.07685] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    S.K. Raut, Effect of non-zero θ 13 on the measurement of θ 23, Mod. Phys. Lett. A 28 (2013) 1350093 [arXiv:1209.5658] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    P. Coloma, H. Minakata and S.J. Parke, Interplay between appearance and disappearance channels for precision measurements of θ 23 and δ, Phys. Rev. D 90 (2014) 093003 [arXiv:1406.2551] [INSPIRE].ADSGoogle Scholar
  77. [77]
    Daya Bay collaboration, L. Zhan, Recent results from Daya Bay, PoS(NEUTEL2015) 017 [arXiv:1506.01149] [INSPIRE].
  78. [78]
    J. Burguet-Castell, M.B. Gavela, J.J. Gomez-Cadenas, P. Hernández and O. Mena, On the measurement of leptonic CP-violation, Nucl. Phys. B 608 (2001) 301 [hep-ph/0103258] [INSPIRE].
  79. [79]
    G.L. Fogli and E. Lisi, Tests of three flavor mixing in long baseline neutrino oscillation experiments, Phys. Rev. D 54 (1996) 3667 [hep-ph/9604415] [INSPIRE].
  80. [80]
    H. Minakata and H. Nunokawa, Exploring neutrino mixing with low-energy superbeams, JHEP 10 (2001) 001 [hep-ph/0108085] [INSPIRE].
  81. [81]
    V. Barger, D. Marfatia and K. Whisnant, Breaking eight fold degeneracies in neutrino CP-violation, mixing and mass hierarchy, Phys. Rev. D 65 (2002) 073023 [hep-ph/0112119] [INSPIRE].
  82. [82]
    S.K. Agarwalla, S. Prakash and S. Uma Sankar, Exploring the three flavor effects with future superbeams using liquid argon detectors, JHEP 03 (2014) 087 [arXiv:1304.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M. Ghosh, P. Ghoshal, S. Goswami and S.K. Raut, Can atmospheric neutrino experiments provide the first hint of leptonic CP-violation?, Phys. Rev. D 89 (2014) 011301 [arXiv:1306.2500] [INSPIRE].ADSGoogle Scholar
  84. [84]
    M. Ghosh, P. Ghoshal, S. Goswami and S.K. Raut, Synergies between neutrino oscillation experiments: an ‘adequate’ configuration for LBNO, JHEP 03 (2014) 094 [arXiv:1308.5979] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    M. Blennow and T. Schwetz, Identifying the neutrino mass ordering with INO and NOνA, JHEP 08 (2012) 058 [Erratum ibid. 11 (2012) 098] [arXiv:1203.3388] [INSPIRE].
  86. [86]
    M. Blennow and T. Schwetz, Determination of the neutrino mass ordering by combining PINGU and Daya Bay II, JHEP 09 (2013) 089 [arXiv:1306.3988] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    A. Ghosh, T. Thakore and S. Choubey, Determining the neutrino mass hierarchy with INO, T2K, NOνA and reactor experiments, JHEP 04 (2013) 009 [arXiv:1212.1305] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    M. Ghosh, P. Ghoshal, S. Goswami and S.K. Raut, Evidence for leptonic CP phase from NOνA, T2K and ICAL: a chronological progression, Nucl. Phys. B 884 (2014) 274 [arXiv:1401.7243] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, JHEP 03 (2014) 028 [arXiv:1311.1822] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Theoretical Physics Department, Fermi National Accelerator LaboratoryBataviaU.S.A.

Personalised recommendations