Sequencing BPS spectra

  • Sergei Gukov
  • Satoshi NawataEmail author
  • Ingmar Saberi
  • Marko Stošić
  • Piotr Sułkowski
Open Access
Regular Article - Theoretical Physics


This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincaré polynomials in numerous examples. Among these structural properties is a novel “sliding” property, which can be explained by using (refined) modular S-matrix. This leads to the identification of modular transformations in Chern-Simons theory and 3d \( \mathcal{N}=2 \) theory via the 3d/3d correspondence. Lastly, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.


Differential and Algebraic Geometry Supersymmetry and Duality Topological Field Theories Topological Strings 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000) 419 [hep-th/9912123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S. Gukov, A.S. Schwarz and C. Vafa, Khovanov-Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005) 53 [hep-th/0412243] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Gukov, Gauge theory and knot homologies, Fortsch. Phys. 55 (2007) 473 [arXiv:0706.2369] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    D.E. Diaconescu, V. Shende and C. Vafa, Large-N duality, lagrangian cycles and algebraic knots, Commun. Math. Phys. 319 (2013) 813 [arXiv:1111.6533] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE].
  6. [6]
    E.S. Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554 [math/0210213].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    B. Gornik, Note on Khovanov link cohomology, math/0402266.
  8. [8]
    N.M. Dunfield, S. Gukov and J. Rasmussen, The superpolynomial for knot homologies, Exper. Math.15 (2006) 129 [math/0505662] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J.A. Rasmussen, Some differentials on Khovanov-Rozansky homology, math/0607544.
  10. [10]
    J.A. Dixon, Calculation of BRS cohomology with spectral sequences, Commun. Math. Phys. 139 (1991) 495 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P. Bouwknegt, J.G. McCarthy and K. Pilch, BRST analysis of physical states for 2D gravity coupled to c < 1 matter, Commun. Math. Phys. 145 (1992) 541 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J. de Boer and T. Tjin, Quantization and representation theory of finite W algebras, Commun. Math. Phys. 158 (1993) 485 [hep-th/9211109] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Bertolini, I.V. Melnikov and M.R. Plesser, Hybrid conformal field theories, JHEP 05 (2014) 043 [arXiv:1307.7063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    K. Wong, Spectral sequences and vacua in N = 2 gauged linear quantum mechanics with potentials, arXiv:1511.05159 [INSPIRE].
  15. [15]
    R. Bott and L. Tu, Differential forms in algebraic topology, Springer Verlag, New York U.S.A. (1982).CrossRefzbMATHGoogle Scholar
  16. [16]
    G. Kato, The heart of cohomology, Springer Science & Business Media, The Netherlands (2006).zbMATHGoogle Scholar
  17. [17]
    E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982) 661 [INSPIRE].MathSciNetzbMATHGoogle Scholar
  19. [19]
    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    H. Kim and I. Saberi, Real homotopy theory and supersymmetric quantum mechanics, arXiv:1511.00978 [INSPIRE].
  21. [21]
    E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups, Lett. Math. Phys. 104 (2014) 465 [arXiv:1305.0533] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Gadde and S. Gukov, 2d index and surface operators, JHEP 03 (2014) 080 [arXiv:1305.0266] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    F. Cachazo, M.R. Douglas, N. Seiberg and E. Witten, Chiral rings and anomalies in supersymmetric gauge theory, JHEP 12 (2002) 071 [hep-th/0211170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    S. Gukov and M. Stošić, Homological algebra of knots and BPS states, Proc. Symp. Pure Math. 85 (2012) 125 [arXiv:1112.0030] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    E. Gorsky, A. Oblomkov, J. Rasmussen and V. Shende, Torus knots and the rational DAHA, Duke Math. J. 163 (2014) 2709 [arXiv:1207.4523] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    E. Gorsky, S. Gukov and M. Stošić, Quadruply-graded colored homology of knots, arXiv:1304.3481 [INSPIRE].
  30. [30]
    L. Crane and I. Frenkel, Four-dimensional topological field theory, Hopf categories and the canonical bases, J. Math. Phys. 35 (1994) 5136 [hep-th/9405183] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    N. Yu. Reshetikhin and V.G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys. 127 (1990) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008) 1 [math/0401268].MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    Y. Yonezawa, Quantum (sl n ,V n ) link invariant and matrix factorizations, Nagoya Math. J. 204 (2011) 69 [arXiv:0906.0220].MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    B. Webster, Knot invariants and higher representation theory II: the categorification of quantum knot invariants, arXiv:1005.4559.
  36. [36]
    H. Wu, A colored sl(N)-homology for links in S 3, arXiv:0907.0695.
  37. [37]
    B. Cooper and V. Krushkal, Categorification of the Jones-Wenzl projectors, Quant. Topol. 3 (2012) 139 [arXiv:1005.5117].MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    I. Frenkel, C. Stroppel and J. Sussan, Categorifying fractional Euler characteristics, Jones-Wenzl projector and 3j-symbols, Quant. Topol. 3 (2012) 181 [arXiv:1007.4680].MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359 [math/9908171] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    M. Khovanov, sl(3) link homology, Algebr. Geom. Topol. 4 (2004) 1045 [math/0304375].MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    M. Khovanov and L. Rozansky, Matrix factorizations and link homology II, Geom. Topol. 12 (2008) 1387 [math/0505056].MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    B. Webster and G. Williamson, A geometric construction of colored HOMFLYPT homology, arXiv:0905.0486.
  43. [43]
    S. Gukov and J. Walcher, Matrix factorizations and Kauffman homology, hep-th/0512298 [INSPIRE].
  44. [44]
    S. Nawata, P. Ramadevi and Zodinmawia, Colored Kauffman homology and super-A-polynomials, JHEP 01 (2014) 126 [arXiv:1310.2240] [INSPIRE].
  45. [45]
    H. Awata, S. Gukov, P. Sulkowski and H. Fuji, Volume conjecture: refined and categorified, Adv. Theor. Math. Phys. 16 (2012) 1669 [arXiv:1203.2182] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    H. Fuji, S. Gukov and P. Sulkowski, Super-A-polynomial for knots and BPS states, Nucl. Phys. B 867 (2013) 506 [arXiv:1205.1515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    H. Fuji, S. Gukov, M. Stošić and P. Sułkowski, 3d analogs of Argyres-Douglas theories and knot homologies, JHEP 01 (2013) 175 [arXiv:1209.1416] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Nawata, P. Ramadevi, Zodinmawia and X. Sun, Super-A-polynomials for twist knots, JHEP 11 (2012) 157 [arXiv:1209.1409] [INSPIRE].
  49. [49]
    T. Dimofte, S. Gukov and L. Hollands, Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011) 225 [arXiv:1006.0977] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    M. Aganagic and S. Shakirov, Knot homology and refined Chern-Simons index, Commun. Math. Phys. 333 (2015) 187 [arXiv:1105.5117] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    Y. Terashima and M. Yamazaki, SL(2, R) Chern-Simons, Liouville and gauge theory on duality walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    T. Dimofte, D. Gaiotto and S. Gukov, 3-manifolds and 3d indices, Adv. Theor. Math. Phys. 17 (2013) 975 [arXiv:1112.5179] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    T. Dimofte, M. Gabella and A.B. Goncharov, K-decompositions and 3d gauge theories, arXiv:1301.0192 [INSPIRE].
  56. [56]
    J. Yagi, 3d TQFT from 6d SCFT, JHEP 08 (2013) 017 [arXiv:1305.0291] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Lee and M. Yamazaki, 3d Chern-Simons theory from M5-branes, JHEP 12 (2013) 035 [arXiv:1305.2429] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    C. Cordova and D.L. Jafferis, Complex Chern-Simons from M5-branes on the squashed three-sphere, arXiv:1305.2891 [INSPIRE].
  59. [59]
    H.-J. Chung, T. Dimofte, S. Gukov and P. Sułkowski, 3d-3d correspondence revisited, arXiv:1405.3663 [INSPIRE].
  60. [60]
    J.A. Harvey and G.W. Moore, Algebras, BPS states and strings, Nucl. Phys. B 463 (1996) 315 [hep-th/9510182] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    I. Cherednik, Jones polynomials of torus knots via DAHA, arXiv:1111.6195 [INSPIRE].
  62. [62]
    S. Nawata and A. Oblomkov, Lectures on knot homology, arXiv:1510.01795 [INSPIRE].
  63. [63]
    A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE].
  65. [65]
    S.H. Katz, A. Klemm and C. Vafa, Geometric engineering of quantum field theories, Nucl. Phys. B 497 (1997) 173 [hep-th/9609239] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    E. Frenkel, S. Gukov and J. Teschner, Surface operators and separation of variables, JHEP 01 (2016) 179 [arXiv:1506.07508] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    C.H. Taubes, Lagrangians for the Gopakumar-Vafa conjecture, Adv. Theor. Math. Phys. 5 (2001) 139 [math/0201219] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  69. [69]
    M. Khovanov and L. Rozansky, Virtual crossings, convolutions and a categorification of the SO(2N) Kauffman polynomial, math/0701333.
  70. [70]
    S. Chun, S. Gukov and D. Roggenkamp, Junctions of surface operators and categorification of quantum groups, arXiv:1507.06318 [INSPIRE].
  71. [71]
    I. Brunner and D. Roggenkamp, B-type defects in Landau-Ginzburg models, JHEP 08 (2007) 093 [arXiv:0707.0922] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    H. Murakami, T. Ohtsuki and S. Yamada, Homfly polynomial via an invariant of colored planar graphs, Enseign. Math. 44 (1998) 325.MathSciNetzbMATHGoogle Scholar
  73. [73]
    J. Walcher, Stability of Landau-Ginzburg branes, J. Math. Phys. 46 (2005) 082305 [hep-th/0412274] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. [74]
    I. Brunner, D. Roggenkamp and S. Rossi, Defect perturbations in Landau-Ginzburg models, JHEP 03 (2010) 015 [arXiv:0909.0696] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    P. Seidel and R.P. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. 108 (2001) 37 [math/0001043] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    L. Lewark and A. Lobb, New quantum obstructions to slicenes, arXiv:1501.07138.
  77. [77]
    D. Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337 [math/0201043].MathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    K. Habiro, A unified Witten-Reshetikhin-Turaev invariant for integral homology spheres, Invent. Math. 171 (2007) 1 [math/0605314].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    G.E. Andrews, Multiple series Rogers-Ramanujan type identities, Pacific J. Math. 114 (1984) 267.MathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    A. Beilinson and J. Bernstein, Localization of g-modules, Comptes Rendus Acad. Sci. Ser. I Math. 292 (1981) 15.MathSciNetzbMATHGoogle Scholar
  81. [81]
    D.A. Vogan, The method of coadjoint orbits for real reductive groups, in Representation theory of Lie groups 8, Park City UT U.S.A. (1998), pg. 179.Google Scholar
  82. [82]
    D. Cooper, M. Culler, H. Gillet, D. Long and P. Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118 (1994) 47.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    R.M. Kashaev, The hyperbolic volume of knots from quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85 [math/9905075].MathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory and the A polynomial, Commun. Math. Phys. 255 (2005) 577 [hep-th/0306165] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  86. [86]
    S. Garoufalidis and T. Le, The colored Jones function is q-holonomic, Geom. Topol. 9 (2004) 1253 [math/0309214].MathSciNetCrossRefzbMATHGoogle Scholar
  87. [87]
    S. Garoufalidis, On the characteristic and deformation varieties of a knot, Geom. Topol. Monogr. 7 (2004) 291 [math/0306230].MathSciNetCrossRefzbMATHGoogle Scholar
  88. [88]
    L. Ng, Combinatorial knot contact homology and transverse knots, Adv. Math. 227 (2011) 2189 [arXiv:1010.0451].MathSciNetCrossRefzbMATHGoogle Scholar
  89. [89]
    L. Ng, Framed knot contact homology, Duke Math. J. 141 (2008) 365 [math/0407071].MathSciNetCrossRefzbMATHGoogle Scholar
  90. [90]
    M. Aganagic and C. Vafa, Large-N duality, mirror symmetry and a Q-deformed A-polynomial for knots, arXiv:1204.4709 [INSPIRE].
  91. [91]
    M. Aganagic, T. Ekholm, L. Ng and C. Vafa, Topological strings, D-model and knot contact homology, Adv. Theor. Math. Phys. 18 (2014) 827 [arXiv:1304.5778] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    S. Arthamonov, A. Mironov, A. Morozov and A. Morozov, Link polynomial calculus and the AENV conjecture, JHEP 04 (2014) 156 [arXiv:1309.7984] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    H. Fuji and P. Sulkowski, Super-A-polynomial, arXiv:1303.3709 [INSPIRE].
  94. [94]
    S. Gukov and P. Sulkowski, A-polynomial, B-model and quantization, JHEP 02 (2012) 070 [arXiv:1108.0002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    H.R. Morton and P.R. Cromwell, Distinguishing mutants by knot polynomials, J. Knot Theor. 5 (1996) 225.MathSciNetCrossRefzbMATHGoogle Scholar
  96. [96]
    S.M. Wehrli, Khovanov homology and Conway mutation, math/0301312.
  97. [97]
    E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].
  98. [98]
    A. Gadde, S. Gukov and P. Putrov, Walls, lines and spectral dualities in 3d gauge theories, JHEP 05 (2014) 047 [arXiv:1302.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    J.A. Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010) 419 [math/0402131].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  100. [100]
    S. Nawata, P. Ramadevi and Zodinmawia, Colored HOMFLY polynomials from Chern-Simons theory, J. Knot Theor. 22 (2013) 1350078 [arXiv:1302.5144] [INSPIRE].
  101. [101]
    P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov and A. Smirnov, Superpolynomials for toric knots from evolution induced by cut-and-join operators, JHEP 03 (2013) 021 [arXiv:1106.4305] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  102. [102]
    M. Rosso and V. Jones, On the invariants of torus knots derived from quantum groups, J. Knot Theor. 2 (1993) 97.MathSciNetCrossRefzbMATHGoogle Scholar
  103. [103]
    Y.-Z. Huang and L. Kong, Modular invariance for conformal full field algebras, Trans. Amer. Math. Soc. 362 (2010) 3027 [math/0609570] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  104. [104]
    A. Brini, B. Eynard and M. Mariño, Torus knots and mirror symmetry, Annales Henri Poincaré 13 (2012) 1873 [arXiv:1105.2012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  105. [105]
    K. Kawagoe, On the formulae for the colored HOMFLY polynomials, arXiv:1210.7574 [INSPIRE].
  106. [106]
    K. Habiro, On the colored Jones polynomials of some simple links, Surikaisekikenkyusho Kokyuroku 1172 (2000) 34.MathSciNetzbMATHGoogle Scholar
  107. [107]
    K. Habiro, On the quantum sl 2 invariants of knots and integral homology spheres, Geom. Topol. Monogr. 4 (2002) 55 [math/0211044].MathSciNetCrossRefzbMATHGoogle Scholar
  108. [108]
    A. Mironov, A. Morozov and A. Morozov, Evolution method and “differential hierarchy” of colored knot polynomials, AIP Conf. Proc. 1562 (2013) 123 [arXiv:1306.3197] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    K. Bringmann, K. Hikami and J. Lovejoy, On the modularity of the inified WRT invariants of certain Seifert manifold, Adv. Appl. Math. 46 (2011) 86.MathSciNetCrossRefzbMATHGoogle Scholar
  110. [110]
    E. Gorsky and A. Negut, Refined knot invariants and Hilbert schemes, J. Math. Pure. Appl. 104 (2015) 403 [arXiv:1304.3328] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  111. [111]
    I.G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York U.S.A. (1995).Google Scholar
  112. [112]
    S. Shakirov, Colored knot amplitudes and Hall-Littlewood polynomials, arXiv:1308.3838 [INSPIRE].
  113. [113]
    A. Iqbal and C. Kozcaz, Refined Hopf link revisited, JHEP 04 (2012) 046 [arXiv:1111.0525] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  114. [114]
    P. Wedrich, Categorified sl(N) invariants of colored rational tangles, arXiv:1404.2736.
  115. [115]
    J. Batson and C. Seed, A link splitting spectral sequence in Khovanov homology, Duke Math. J. 164 (2015) 801 [arXiv:1303.6240].MathSciNetCrossRefzbMATHGoogle Scholar
  116. [116]
    B. Cooper, private communication.Google Scholar
  117. [117]
    A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. I. Integrability and difference equations, in Strings, gauge fields, and the geometry behind: the legacy of Maximilian Kreuzer, A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov and E. Scheidegger eds., World Scietific Publishins Co. Pte. Ltd., Singapore (2011), pg. 101 [arXiv:1112.5754].
  118. [118]
    A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid, JHEP 03 (2012) 034 [arXiv:1112.2654] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  119. [119]
    H. Itoyama, A. Mironov, A. Morozov and A. Morozov, Character expansion for HOMFLY polynomials. III. All 3-strand braids in the first symmetric representation, Int. J. Mod. Phys. A 27 (2012) 1250099 [arXiv:1204.4785] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  120. [120]
    H. Queffelec and D. Rose, Sutured annular Khovanov-Rozansky homology, arXiv:1506.08188.
  121. [121]
    R. Gelca, On the relation between the A-polynomial and the Jones polynomial, Proc. Amer. Math. Soc. 130 (2002) 1235 [math/0004158].MathSciNetCrossRefzbMATHGoogle Scholar
  122. [122]
    S. Garoufalidis, The colored HOMFLY polynomial is q-holonomic, arXiv:1211.6388 [INSPIRE].
  123. [123]
    J. Gu, H. Jockers, A. Klemm and M. Soroush, Knot invariants from topological recursion on augmentation varieties, Commun. Math. Phys. 336 (2015) 987 [arXiv:1401.5095] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  124. [124]
    T. Dimofte and S. Gukov, Quantum field theory and the volume conjecture, Contemp. Math. 541 (2011) 41 [arXiv:1003.4808] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  125. [125]
    L. Ng AugmentationVarietiesforLinks.nb,
  126. [126]
    J.H. Conway, An enumeration of knots and links, and some of their algebraic properties, Comput. Probl. Abstr. Alg. (1970) 329.Google Scholar
  127. [127]
    M. Khovanov, Patterns in knot cohomology, I, Exper. Math. 12 (2003) 365 [math/0201306].MathSciNetCrossRefzbMATHGoogle Scholar
  128. [128]
    H. Jockers, A. Klemm and M. Soroush, Torus knots and the topological vertex, Lett. Math. Phys. 104 (2014) 953 [arXiv:1212.0321] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  129. [129]
    J.M.F. Labastida and M. Mariño, A new point of view in the theory of knot and link invariants, math/0104180 [INSPIRE].
  130. [130]
    J.M.F. Labastida and M. Mariño, Polynomial invariants for torus knots and topological strings, Commun. Math. Phys. 217 (2001) 423 [hep-th/0004196] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  131. [131]
    J.M.F. Labastida, M. Mariño and C. Vafa, Knots, links and branes at large-N, JHEP 11 (2000) 007 [hep-th/0010102] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  132. [132]
    S. Garoufalidis, P. Kucharski and P. Sulkowski, Knots, BPS states and algebraic curves, arXiv:1504.06327 [INSPIRE].
  133. [133]
    P. Paule, The concept of Bailey chains,
  134. [134]
    N. Carqueville and D. Murfet, Computing Khovanov-Rozansky homology and defect fusion, Algebr. Geom. Topol. 14 (2014) 489 [arXiv:1108.1081] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  135. [135]
  136. [136]
    M. Stošić, Khovanov homology of torus links, Topol. Appl. 153 (2009) 533 [math/0606656].MathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Sergei Gukov
    • 1
    • 2
  • Satoshi Nawata
    • 1
    • 3
    Email author
  • Ingmar Saberi
    • 1
  • Marko Stošić
    • 4
    • 5
  • Piotr Sułkowski
    • 1
    • 6
  1. 1.Walter Burke Institute for Theoretical PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.
  2. 2.Max-Planck-Institut für MathematikBonnGermany
  3. 3.Centre for Quantum Geometry of Moduli SpacesUniversity of AarhusAarhusDenmark
  4. 4.CAMGSD, Departamento de Matemática, Instituto Superior TécnicoLisbonPortugal
  5. 5.Mathematical Institute SANUBelgradeSerbia
  6. 6.Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations