Advertisement

A roadmap to control penguin effects in B d 0  → J/ψK S 0 and B s 0  → J/ψϕ

  • Kristof De Bruyn
  • Robert FleischerEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Measurements of CP violation in B d 0  → J/ψK S 0 and B s 0  → J/ψϕ decays play key roles in testing the quark-flavour sector of the Standard Model. The theoretical interpretation of the corresponding observables is limited by uncertainties from doubly Cabibbo-suppressed penguin topologies. With continuously increasing experimental precision, it is mandatory to get a handle on these contributions, which cannot be calculated reliably in QCD. In the case of the measurement of sin 2β from B d 0  → J/ψK S 0 , the U-spin-related decay B s 0  → J/ψK S 0 offers a tool to control the penguin effects. As the required measurements are not yet available, we use data for decays with similar dynamics and the SU(3) flavour symmetry to constrain the size of the expected penguin corrections. We predict the CP asymmetries of B s 0  → J/ψK S 0 and present a scenario to fully exploit the physics potential of this decay, emphasising also the determination of hadronic parameters and their comparison with theory. In the case of the benchmark mode B s 0  → J/ψϕ used to determine the \( {B}_s^0-{\overline{B}}_s^0 \) mixing phase ϕ s the penguin effects can be controlled through B d 0  → J/ψρ 0 and \( {B}_s^0\to J/\psi {\overline{K}}^{*0} \) decays. The LHCb collaboration has recently presented pioneering results on this topic. We analyse their implications and present a roadmap for controlling the penguin effects.

Keywords

B-Physics CP violation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J. Ellis, The beautiful physics of LHC run 2, talk at Beauty 2014, Edinburgh U.K. July 14-18 2014 [arXiv:1412.2666] [INSPIRE].
  4. [4]
    Belle-II collaboration, T. Abe et al., Belle II technical design report, arXiv:1011.0352 [INSPIRE].
  5. [5]
    N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    J. Charles et al., Predictions of selected flavour observables within the standard model, Phys. Rev. D 84 (2011) 033005 [arXiv:1106.4041] [INSPIRE]; for updates see CKMfitter webpage, http://ckmfitter.in2p3.fr/.
  8. [8]
    L. Wolfenstein, Parametrization of the Kobayashi-Maskawa matrix, Phys. Rev. Lett. 51 (1983) 1945 [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    R. Fleischer, Extracting γ from B s(d)J/ψK S and B d(s) → D d(s)+ D d(s), Eur. Phys. J. C 10 (1999) 299 [hep-ph/9903455] [INSPIRE].ADSGoogle Scholar
  10. [10]
    R. Fleischer, Extracting CKM phases from angular distributions of B d(s) decays into admixtures of CP eigenstates, Phys. Rev. D 60 (1999) 073008 [hep-ph/9903540] [INSPIRE].ADSGoogle Scholar
  11. [11]
    R. Fleischer, Recent theoretical developments in CP-violation in the B system, Nucl. Instrum. Meth. A 446 (2000) 1 [hep-ph/9908340] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    M. Ciuchini, M. Pierini and L. Silvestrini, The effect of penguins in the B dJ/ψK 0 CP asymmetry, Phys. Rev. Lett. 95 (2005) 221804 [hep-ph/0507290] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    M. Ciuchini, M. Pierini and L. Silvestrini, Theoretical uncertainty in sin 2β: an update, arXiv:1102.0392 [INSPIRE].
  14. [14]
    S. Faller, M. Jung, R. Fleischer and T. Mannel, The golden modes B 0J/ψK S,L in the era of precision flavour physics, Phys. Rev. D 79 (2009) 014030 [arXiv:0809.0842] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Faller, R. Fleischer and T. Mannel, Precision physics with B s0 → J/ψϕ at the LHC: the quest for new physics, Phys. Rev. D 79 (2009) 014005 [arXiv:0810.4248] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Jung, Determining weak phases from BJ/ψP decays, Phys. Rev. D 86 (2012) 053008 [arXiv:1206.2050] [INSPIRE].ADSGoogle Scholar
  17. [17]
    X. Liu, W. Wang and Y. Xie, Penguin pollution in BJ/ψV decays and impact on the extraction of the \( {B}_s-{\overline{B}}_s \) mixing phase, Phys. Rev. D 89 (2014) 094010 [arXiv:1309.0313] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A.S. Dighe, I. Dunietz, H.J. Lipkin and J.L. Rosner, Angular distributions and lifetime differences in B sJ/ψϕ decays, Phys. Lett. B 369 (1996) 144 [hep-ph/9511363] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    A.S. Dighe, I. Dunietz and R. Fleischer, Extracting CKM phases and \( {B}_s-{\overline{B}}_s \) mixing parameters from angular distributions of nonleptonic B decays, Eur. Phys. J. C 6 (1999) 647 [hep-ph/9804253] [INSPIRE].ADSGoogle Scholar
  20. [20]
    LHCb collaboration, Precision measurement of CP violation in B s0 → J/ψK + K decays, Phys. Rev. Lett. 114 (2015) 041801 [arXiv:1411.3104] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    LHCb collaboration, Measurement of the CP-violating phase β in B 0J/ψπ + π decays and limits on penguin effects, Phys. Lett. B 742 (2015) 38 [arXiv:1411.1634] [INSPIRE].Google Scholar
  22. [22]
    L. Zhang and S. Stone, Time-dependent Dalitz-plot formalism for B qJ/ψh + h , Phys. Lett. B 719 (2013) 383 [arXiv:1212.6434] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    R. Fleischer, CP violation in the B system and relations to Kπνn¯u decays, Phys. Rept. 370 (2002) 537 [hep-ph/0207108] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    CDF collaboration, T. Aaltonen et al., Observation of B s0 → J/ψK*(892)0 and B s0 → J/ψK S0 decays, Phys. Rev. D 83 (2011) 052012 [arXiv:1102.1961] [INSPIRE].ADSGoogle Scholar
  25. [25]
    LHCb collaboration, Measurement of the effective B s0 → J/ψK S0 lifetime, Nucl. Phys. B 873 (2013) 275 [arXiv:1304.4500] [INSPIRE].Google Scholar
  26. [26]
    I. Dunietz, R. Fleischer and U. Nierste, In pursuit of new physics with B s decays, Phys. Rev. D 63 (2001) 114015 [hep-ph/0012219] [INSPIRE].ADSGoogle Scholar
  27. [27]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].Google Scholar
  28. [28]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE]; for updates see Heavy Flavor Averaging Group webpage, http://www.slac.stanford.edu/xorg/hfag/.
  29. [29]
    K. De Bruyn et al., Branching ratio measurements of B s decays, Phys. Rev. D 86 (2012) 014027 [arXiv:1204.1735] [INSPIRE].ADSGoogle Scholar
  30. [30]
    R. Fleischer and T. Mannel, Constraining the CKM angle γ and penguin contributions through combined BπK branching ratios, Phys. Rev. D 57 (1998) 2752 [hep-ph/9704423] [INSPIRE].ADSGoogle Scholar
  31. [31]
    R. Fleischer and S. Recksiegel, General lower bounds for bd penguin processes, Phys. Rev. D 71 (2005) 051501 [hep-ph/0409137] [INSPIRE].ADSGoogle Scholar
  32. [32]
    K. De Bruyn, R. Fleischer and P. Koppenburg, Extracting γ and penguin topologies through CP-violation in B s0 → J/psiK S, Eur. Phys. J. C 70 (2010) 1025 [arXiv:1010.0089] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    A. Bevan et al., Standard model updates and new physics analysis with the unitarity triangle fit, arXiv:1411.7233 [INSPIRE]; for updates see UTfit collaboration webpage, http://www.utfit.org/.
  34. [34]
    Belle collaboration, S.E. Lee et al., Improved measurement of time-dependent CP-violation in B 0J/ψπ 0 decays, Phys. Rev. D 77 (2008) 071101 [arXiv:0708.0304] [INSPIRE].Google Scholar
  35. [35]
    BaBar collaboration, B. Aubert et al., Evidence for CP-violation in B 0J/ψπ 0 decays, Phys. Rev. Lett. 101 (2008) 021801 [arXiv:0804.0896] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    A. Bharucha, Two-loop corrections to the Bπ form factor from QCD sum rules on the light-cone and |V ub|, JHEP 05 (2012) 092 [arXiv:1203.1359] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    A. Khodjamirian, T. Mannel, A.A. Pivovarov and Y.-M. Wang, Charm-loop effect in BK (*) + and BK * γ, JHEP 09 (2010) 089 [arXiv:1006.4945] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    G. Duplancic and B. Melic, B, B sK form factors: an update of light-cone sum rule results, Phys. Rev. D 78 (2008) 054015 [arXiv:0805.4170] [INSPIRE].ADSGoogle Scholar
  39. [39]
    P. Ball, |V ub| from UTangles and Bπℓν, Phys. Lett. B 644 (2007) 38 [hep-ph/0611108] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    LHCb collaboration, Implications of LHCb measurements and future prospects, Eur. Phys. J. C 73 (2013) 2373 [arXiv:1208.3355] [INSPIRE].Google Scholar
  41. [41]
    LHCb collaboration, Measurement of CP asymmetry in B s0 → D s K ± decays, JHEP 11 (2014) 060 [arXiv:1407.6127] [INSPIRE].Google Scholar
  42. [42]
    LHCb collaboration, Measurement of the \( {B}_s^0\to J/\psi {\overline{K}}^{*0} \) branching fraction and angular amplitudes, Phys. Rev. D 86 (2012) 071102 [arXiv:1208.0738] [INSPIRE].Google Scholar
  43. [43]
    LHCb collaboration, Measurement of the fragmentation fraction ratio f s /f d and its dependence on B meson kinematics, JHEP 04 (2013) 001 [arXiv:1301.5286] [INSPIRE].Google Scholar
  44. [44]
    LHCb collaboration, Updated average f s /f d b-hadron production fraction ratio for 7 TeV pp collisions, LHCb-CONF-2013-011, CERN, Geneva Switzerland (2013).
  45. [45]
    R. Fleischer, N. Serra and N. Tuning, A new strategy for B s branching ratio measurements and the search for new physics in B s0 → mu + mu , Phys. Rev. D 82 (2010) 034038 [arXiv:1004.3982] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J.L. Rosner, Determination of pseudoscalar charmed meson decay constants from B meson decays, Phys. Rev. D 42 (1990) 3732 [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Lenz, B-mixing in and beyond the standard model, talk at CKM 2014, Vienna Austria September 8-12 2014 [arXiv:1409.6963] [INSPIRE].
  48. [48]
    P. Ball and R. Zwicky, B d,sρ, ω, K * , ϕ decay form-factors from light-cone sum rules revisited, Phys. Rev. D 71 (2005) 014029 [hep-ph/0412079] [INSPIRE].ADSGoogle Scholar
  49. [49]
    R. Fleischer and R. Knegjens, In pursuit of new physics with B s0 → K + K , Eur. Phys. J. C 71 (2011) 1532 [arXiv:1011.1096] [INSPIRE].ADSGoogle Scholar
  50. [50]
    LHCb collaboration, Measurement of resonant and CP components in \( {\overline{B}}_s^0\to J/\psi {\pi}^{+}{\pi}^{-} \) decays, Phys. Rev. D 89 (2014) 092006 [arXiv:1402.6248] [INSPIRE].ADSGoogle Scholar
  51. [51]
    A.J. Buras and R. Fleischer, Quark mixing, CP-violation and rare decays after the top quark discovery, Adv. Ser. Direct. High Energy Phys. 15 (1998) 65 [hep-ph/9704376] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    P. Ball and R. Fleischer, Probing new physics through B mixing: status, benchmarks and prospects, Eur. Phys. J. C 48 (2006) 413 [hep-ph/0604249] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects in ΔF = 2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A.J. Buras and J. Girrbach, Towards the identification of new physics through quark flavour violating processes, Rept. Prog. Phys. 77 (2014) 086201 [arXiv:1306.3775] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.NikhefAmsterdamNetherlands
  2. 2.Department of Physics and AstronomyVrije Universiteit AmsterdamAmsterdamNetherlands

Personalised recommendations