Constraining the Higgs portal with antiprotons

  • Alfredo Urbano
  • Wei Xue
Open Access
Regular Article - Theoretical Physics


The scalar Higgs portal is a compelling model of dark matter (DM) in which a renormalizable coupling with the Higgs boson provides the connection between the visible world and the dark sector. In this paper we investigate the constraint placed on the parameter space of this model by the antiproton data. Due to the fact that the antiproton- to-proton ratio has relative less systematic uncertainties than the antiproton absolute flux, we propose and explore the possibility to combine all the available \( \overline{p}/p \) data. Following this approach, we are able to obtain stronger limits if compared with the existing literature. In particular, we show that most of the parameter space close to the Higgs resonance is ruled out by our analysis. Furthermore, by studying the reach of the future AMS-02 antiproton and antideuteron data, we argue that a DM mass of O(150) GeV offers a promising discovery potential. The method of combining all the antiproton-to-proton ratio data proposed in this paper is quite general, and can be straightforwardly applied to other models.


Higgs Physics Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    O. Chamberlain, E. Segre, C. Wiegand and T. Ypsilantis, Observation of anti-protons, Phys. Rev. 100 (1955) 947 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    M. Kachelriess, P.D. Serpico and M.A. Solberg, On the role of electroweak bremsstrahlung for indirect dark matter signatures, Phys. Rev. D 80 (2009) 123533 [arXiv:0911.0001] [INSPIRE].ADSGoogle Scholar
  3. [3]
    P. Ciafaloni and A. Urbano, TeV scale dark matter and electroweak radiative corrections, Phys. Rev. D 82 (2010) 043512 [arXiv:1001.3950] [INSPIRE].ADSGoogle Scholar
  4. [4]
    P. Ciafaloni et al., Weak corrections are relevant for dark matter indirect detection, JCAP 03 (2011) 019 [arXiv:1009.0224] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    L. Bergstrom, J. Edsjo and P. Ullio, Cosmic anti-protons as a probe for supersymmetric dark matter?, Astrophys. J. 526 (1999) 215 [astro-ph/9902012] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    A. Barrau et al., Kaluza-Klein dark matter and galactic antiprotons, Phys. Rev. D 72 (2005) 063507 [astro-ph/0506389] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    P. Chardonnet, G. Mignola, P. Salati and R. Taillet, Galactic diffusion and the anti-proton signal of supersymmetric dark matter, Phys. Lett. B 384 (1996) 161 [astro-ph/9606174] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    L. Bergstrom, J. Edsjo, M. Gustafsson and P. Salati, Is the dark matter interpretation of the egret gamma excess compatible with antiproton measurements?, JCAP 05 (2006) 006 [astro-ph/0602632] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    N. Fornengo, L. Maccione and A. Vittino, Constraints on particle dark matter from cosmic-ray antiprotons, JCAP 04 (2014) 003 [arXiv:1312.3579] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    C. Evoli, I. Cholis, D. Grasso, L. Maccione and P. Ullio, Antiprotons from dark matter annihilation in the Galaxy: astrophysical uncertainties, Phys. Rev. D 85 (2012) 123511 [arXiv:1108.0664] [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Cirelli and G. Giesen, Antiprotons from dark matter: current constraints and future sensitivities, JCAP 04 (2013) 015 [arXiv:1301.7079] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    M. Asano, T. Bringmann, G. Sigl and M. Vollmann, 130 GeV gamma-ray line and generic dark matter model building constraints from continuum gamma rays, radio and antiproton data, Phys. Rev. D 87 (2013) 103509 [arXiv:1211.6739] [INSPIRE].ADSGoogle Scholar
  13. [13]
    K. Cheung, P.-Y. Tseng and T.-C. Yuan, Cosmic antiproton constraints on effective interactions of the dark matter, JCAP 01 (2011) 004 [arXiv:1011.2310] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    K. Cheung, J. Song and P.-Y. Tseng, Cosmic positron and antiproton constraints on the gauge-Higgs dark matter, JCAP 09 (2010) 023 [arXiv:1007.0282] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    M. Garny, A. Ibarra and S. Vogl, Dark matter annihilations into two light fermions and one gauge boson: General analysis and antiproton constraints, JCAP 04 (2012) 033 [arXiv:1112.5155] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    D.G. Cerdeno, T. Delahaye and J. Lavalle, Cosmic-ray antiproton constraints on light singlino-like dark matter candidates, Nucl. Phys. B 854 (2012) 738 [arXiv:1108.1128] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    J. Lavalle, Cosmic-ray antiproton constraints on light dark matter candidates, J. Phys. Conf. Ser. 375 (2012) 012032 [arXiv:1112.0678] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    A. De Simone, A. Riotto and W. Xue, Interpretation of AMS-02 results: correlations among dark matter signals, JCAP 05 (2013) 003 [arXiv:1304.1336] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    M. Cirelli, D. Gaggero, G. Giesen, M. Taoso and A. Urbano, Antiproton constraints on the GeV gamma-ray excess: a comprehensive analysis, JCAP 12 (2014) 045 [arXiv:1407.2173] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    R. Kappl and M.W. Winkler, The cosmic ray antiproton background for AMS-02, JCAP 09 (2014) 051 [arXiv:1408.0299] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    T. Bringmann, M. Vollmann and C. Weniger, Updated cosmic-ray and radio constraints on light dark matter: implications for the GeV gamma-ray excess at the galactic center, Phys. Rev. D 90 (2014) 123001 [arXiv:1406.6027] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. Marzocca and A. Urbano, Composite dark matter and LHC interplay, JHEP 07 (2014) 107 [arXiv:1404.7419] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].ADSGoogle Scholar
  25. [25]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].
  27. [27]
    F.S. Queiroz and K. Sinha, The poker face of the majoron dark matter model: LUX to keV line, Phys. Lett. B 735 (2014) 69 [arXiv:1404.1400] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  29. [29]
    J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    W.-L. Guo and Y.-L. Wu, The real singlet scalar dark matter model, JHEP 10 (2010) 083 [arXiv:1006.2518] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    P. Gondolo et al., DarkSUSY: Computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    P. Gondolo et al., DarkSUSY webpage,
  33. [33]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, ATLAS-CONF-2013-011 (2013).
  35. [35]
    CMS collaboration, Search for the Higgs boson decaying to invisible particles produced in association with Z bosons decaying to bottom quarks, CMS-PAS-HIG-13-028 (2013).
  36. [36]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    K.M. Ferriere, The interstellar environment of our galaxy, Rev. Mod. Phys. 73 (2001) 1031 [astro-ph/0106359] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    C. Evoli, D. Gaggero, D. Grasso and L. Maccione, Cosmic-ray nuclei, antiprotons and gamma-rays in the galaxy: a new diffusion model, JCAP 10 (2008) 018 [arXiv:0807.4730] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    D. Gaggero, L. Maccione, G. Di Bernardo, C. Evoli and D. Grasso, Three-dimensional model of cosmic-ray lepton propagation reproduces data from the alpha magnetic spectrometer on the International Space Station, Phys. Rev. Lett. 111 (2013) 021102 [arXiv:1304.6718] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    J.J. Engelmann, P. Ferrando, A. Soutoul, P. Goret and E. Juliusson, Charge composition and energy spectra of cosmic-ray for elements from Be to NIResults from HEAO-3-C2, Astron. Astrophys. 233 (1990) 96 [INSPIRE].ADSGoogle Scholar
  42. [42]
    G.A de Nolfo et al., Observations of the Li, Be, and B isotopes and constraints on cosmic-ray propagation, Adv. Space Res. 38 (2006) 1558 [astro-ph/0611301] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    N.E. Yanasak et al., Measurement of the secondary radionuclides 10 Be, 26 Al, 36 Cl, 54 Mn, and 14 C and implications for the galactic cosmic-ray age, Astrophys. J. 563 (2001) 768.CrossRefADSGoogle Scholar
  44. [44]
    H.S. Ahn et al., Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment, Astropart. Phys. 30 (2008) 133 [arXiv:0808.1718] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    A.D. Panov et al., Relative abundances of cosmic ray nuclei B-C-N-O in the energy region from 10 GeV/n to 300 GeV/n. Results from ATIC-2 (the science flight of ATIC), arXiv:0707.4415 [INSPIRE].
  46. [46]
    D. Mueller et al., Energy spectra and composition of primary cosmic rays, Astrophys. J. 374 (1991) 356.CrossRefADSGoogle Scholar
  47. [47]
    BESS collaboration, S. Orito et al., Precision measurement of cosmic ray anti-proton spectrum, Phys. Rev. Lett. 84 (2000) 1078 [astro-ph/9906426] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    Y. Asaoka et al., Measurements of cosmic ray low-energy anti-proton and proton spectra in a transient period of the solar field reversal, Phys. Rev. Lett. 88 (2002) 051101 [astro-ph/0109007] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    WiZard/CAPRICE collaboration, M. Boezio et al., The cosmic ray anti-proton flux between 3 GeV and 49 GeV, Astrophys. J. 561 (2001) 787 [astro-ph/0103513] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    O. Adriani et al., Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment, JETP Lett. 96 (2013) 621 [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    P. Ciafaloni et al., On the importance of electroweak corrections for Majorana dark matter indirect detection, JCAP 06 (2011) 018 [arXiv:1104.2996] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  53. [53]
  54. [54]
    J.F. Navarro, C.S. Frenk and S.D.M. White, The structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    G. Di Bernardo, C. Evoli, D. Gaggero, D. Grasso and L. Maccione, Cosmic ray electrons, positrons and the synchrotron emission of the galaxy: consistent analysis and implications, JCAP 03 (2013) 036 [arXiv:1210.4546] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    Fermi-LAT collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope, Phys. Rev. D 89 (2014) 042001 [arXiv:1310.0828] [INSPIRE].
  57. [57]
    Fermi-LAT collaboration, B. Anderson, A search for dark matter annihilation in dwarf spheroidal galaxies with pass 8 data, talk given at the 5thInternational Fermi Symposium, October 20-24, Nagoya, Japan (2014).
  58. [58]
    L. Feng, S. Profumo and L. Ubaldi, Closing in on singlet scalar dark matter: LUX, invisible Higgs decays and gamma-ray lines, JHEP 03 (2015) 045 [arXiv:1412.1105] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    J.F. Navarro et al., The diversity and similarity of cold dark matter halos, Mon. Not. Roy. Astron. Soc. 402 (2010) 21 [arXiv:0810.1522] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    A.W. Graham, D. Merritt, B. Moore, J. Diemand and B. Terzic, Empirical models for dark matter halos. I. Nonparametric construction of density profiles and comparison with parametric models, Astron. J. 132 (2006) 2685 [astro-ph/0509417] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    A. Burkert, The Structure of dark matter halos in dwarf galaxies, IAU Symp. 171 (1996) 175 [Astrophys. J. 447 (1995) L25] [astro-ph/9504041] [INSPIRE].
  62. [62]
    J.F. Navarro et al., The Inner structure of ΛCDM halos 3: universality and asymptotic slopes, Mon. Not. Roy. Astron. Soc. 349 (2004) 1039 [astro-ph/0311231] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    A.W. Graham, D. Merritt, B. Moore, J. Diemand and B. Terzic, Empirical models for dark matter halos. II. Inner profile slopes, dynamical profiles and ρ/σ 3, Astron. J. 132 (2006) 2701 [astro-ph/0608613] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    A.A. El-Zant, Y. Hoffman, J. Primack, F. Combes and I. Shlosman, Flat-cored dark matter in cuspy clusters of galaxies, Astrophys. J. 607 (2004) L75 [astro-ph/0309412] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    S. Ting, The alpha magnetic spectrometer experiment on the international space station, talk given at SpacePart12 — The 4thInternational Conference on Particle and Fundamental Physics in Space, November 5-7, CERN, Geneva (2012) .
  66. [66]
    F. Donato, N. Fornengo and P. Salati, Anti-deuterons as a signature of supersymmetric dark matter, Phys. Rev. D 62 (2000) 043003 [hep-ph/9904481] [INSPIRE].ADSGoogle Scholar
  67. [67]
    A. Ibarra and S. Wild, Prospects of antideuteron detection from dark matter annihilations or decays at AMS-02 and GAPS, JCAP 02 (2013) 021 [arXiv:1209.5539] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    N. Fornengo, L. Maccione and A. Vittino, Dark matter searches with cosmic antideuterons: status and perspectives, JCAP 09 (2013) 031 [arXiv:1306.4171] [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    M. Cirelli et al., PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection, JCAP 03 (2011) 051 [Erratum ibid. 1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].
  70. [70]
    M. Kadastik, M. Raidal and A. Strumia, Enhanced anti-deuteron dark matter signal and the implications of PAMELA, Phys. Lett. B 683 (2010) 248 [arXiv:0908.1578] [INSPIRE].CrossRefADSGoogle Scholar
  71. [71]
    A. Hryczuk, I. Cholis, R. Iengo, M. Tavakoli and P. Ullio, Indirect detection analysis: wino dark matter case study, JCAP 07 (2014) 031 [arXiv:1401.6212] [INSPIRE].CrossRefADSGoogle Scholar
  72. [72]
    R. Duperray et al., Flux of light antimatter nuclei near Earth, induced by cosmic rays in the Galaxy and in the atmosphere, Phys. Rev. D 71 (2005) 083013 [astro-ph/0503544] [INSPIRE].ADSGoogle Scholar
  73. [73]
    K. Mori et al., A novel antimatter detector based on x-ray deexcitation of exotic atoms, Astrophys. J. 566 (2002) 604 [astro-ph/0109463] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    H. Fuke et al., Current status and future plans for the General AntiParticle Spectrometer (GAPS), Adv. Space Res. 41 (2008) 2056 [INSPIRE].CrossRefADSGoogle Scholar
  75. [75]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a standard model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].ADSGoogle Scholar
  77. [77]
    W.-C. Huang, A. Urbano and W. Xue, Fermi bubbles under dark matter scrutiny part II: particle physics analysis, JCAP 04 (2014) 020 [arXiv:1310.7609] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.SISSA — International School for Advanced StudiesTriesteItaly
  2. 2.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  3. 3.INFN — Sezione di TriesteTriesteItaly

Personalised recommendations