Quivers, words and fundamentals

Open Access
Regular Article - Theoretical Physics

Abstract

A systematic study of holomorphic gauge invariant operators in general \( \mathcal{N} \) = 1 quiver gauge theories, with unitary gauge groups and bifundamental matter fields, was recently presented in [1]. For large ranks a simple counting formula in terms of an infinite product was given. We extend this study to quiver gauge theories with fundamental matter fields, deriving an infinite product form for the refined counting in these cases. The infinite products are found to be obtained from substitutions in a simple building block expressed in terms of the weighted adjacency matrix of the quiver. In the case without fundamentals, it is a determinant which itself is found to have a counting interpretation in terms of words formed from partially commuting letters associated with simple closed loops in the quiver. This is a new relation between counting problems in gauge theory and the Cartier-Foatamonoid. For finite ranks of the unitary gauge groups, the refined counting is given in terms of expressions involving Littlewood-Richardson coefficients.

Keywords

Gauge Symmetry 1/N Expansion Global Symmetries AdS-CFT Correspondence 

References

  1. [1]
    J. Pasukonis and S. Ramgoolam, Quivers as calculators: counting, correlators and Riemann surfaces, JHEP 04 (2013) 094 [arXiv:1301.1980] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N =4 SYM theory,Adv. Theor. Math. Phys. 5(2002)809[hep-th/0111222][INSPIRE].MathSciNetGoogle Scholar
  5. [5]
    S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for BPS correlators in N = 4 SYM theory, Nucl. Phys. B 641 (2002) 131 [hep-th/0205221] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact multi-matrix correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact multi-restricted Schur polynomial correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    T.K. Dey, Exact large R-charge correlators in ABJM theory, JHEP 08 (2011) 066 [arXiv:1105.0218] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    R. de Mello Koch, B.A.E. Mohammed, J. Murugan and A. Prinsloo, Beyond the planar limit in ABJM, JHEP 05 (2012) 037 [arXiv:1202.4925] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    B.A.E. Mohammed, Nonplanar integrability and parity in ABJ theory, Int. J. Mod. Phys. A 28 (2013) 1350043 [arXiv:1207.6948] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    P. Caputa and B.A.E. Mohammed, From Schurs to giants in ABJ(M), JHEP 01 (2013) 055 [arXiv:1210.7705] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
  18. [18]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    J. Erdmenger and V. Filev, Mesons from global anti-de Sitter space, JHEP 01 (2011) 119 [arXiv:1012.0496] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    D. Arnaudov, V. Filev and R. Rashkov, Flavours in global Klebanov-Witten background, JHEP 03 (2014) 023 [arXiv:1312.7224] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    P. Ouyang, Holomorphic D7 branes and flavored N = 1 gauge theories, Nucl. Phys. B 699 (2004) 207 [hep-th/0311084] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    T.S. Levi and P. Ouyang, Mesons and flavor on the conifold, Phys. Rev. D 76 (2007) 105022 [hep-th/0506021] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    P. Cartier and D. Foata, Problèmes combinatoires de commutation et réarrangements (in French), Springer-Verlag, Berlin Germany (1969).Google Scholar
  24. [24]
    C. Krattenthaler, The theory of heaps and the Cartier-Foata monoid, in Appendix of Commutation and Rearrangements, (2006), pg. 63.Google Scholar
  25. [25]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn-deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  27. [27]
    W. Fulton and J. Harris, Representation theory: a first course, Graduate Texts in Mathematics/Readings in Mathematics, Springer, New York U.S.A. (1991).
  28. [28]
    S. Ramgoolam, Schur-Weyl duality as an instrument of gauge-string duality, AIP Conf. Proc. 1031 (2008) 255 [arXiv:0804.2764] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    A. Terras, Zeta functions of graphs: a stroll through the garden, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge U.K. (2010).Google Scholar
  30. [30]
    W. Wallis, A beginners guide to graph theory, Birkhäuser, Switzerland (2010).Google Scholar
  31. [31]
    G. Viennot, Heaps of pieces, I: basic definitions and combinatorial lemmas, in Combinatoire énumérative, G. Labelle and P. Leroux eds., Lect. Notes Math. 1234 (1986) 321, Springer, Berlin Heidelberg Germany (1986).Google Scholar
  32. [32]
    P.A. MacMahon, Combinatory analysis, Cambridge University Press, Cambridge U.K. (1915).Google Scholar
  33. [33]
    R. de Mello Koch and S. Ramgoolam, A double coset ansatz for integrability in AdS/CFT, JHEP 06 (2012) 083 [arXiv:1204.2153] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Unquenched flavors in the Klebanov-Witten model, JHEP 02 (2007) 090 [hep-th/0612118] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    F. Bigazzi, A.L. Cotrone and A. Paredes, Klebanov-Witten theory with massive dynamical flavors, JHEP 09 (2008) 048 [arXiv:0807.0298] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  36. [36]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    J. Gray, A. Hanany, Y.-H. He, V. Jejjala and N. Mekareeya, SQCD: a geometric aperçu, JHEP 05 (2008) 099 [arXiv:0803.4257] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb branch and the moduli space of instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    M.R. Douglas, B.R. Greene and D.R. Morrison, Orbifold resolution by D-branes, Nucl. Phys. B 506 (1997) 84 [hep-th/9704151] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    R. de Mello Koch, R. Kreyfelt and N. Nokwara, Finite N quiver gauge theory, Phys. Rev. D 89 (2014) 126004 [arXiv:1403.7592] [INSPIRE].ADSGoogle Scholar
  41. [41]
    O. Foda, N = 4 SYM structure constants as determinants, JHEP 03 (2012) 096 [arXiv:1111.4663] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Bissi, C. Kristjansen, A. Martirosyan and M. Orselli, On three-point functions in the AdS 4 /CFT 3 correspondence, JHEP 01 (2013) 137 [arXiv:1211.1359] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    R. de Mello Koch, M. Dessein, D. Giataganas and C. Mathwin, Giant graviton oscillators, JHEP 10 (2011) 009 [arXiv:1108.2761] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    G. Viennot, Cours universidad de talca: heaps of pieceswith interactions in mathematics and physics, http://www.xavierviennot.org, (2013)-(2014), accessed December 16 2014.
  45. [45]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavor, JHEP 07 (2003) 049 [hep-th/0304032] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    F. Cachazo, M.R. Douglas, N. Seiberg and E. Witten, Chiral rings and anomalies in supersymmetric gauge theory, JHEP 12 (2002) 071 [hep-th/0211170] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    M.A. Luty and W. Taylor, Varieties of vacua in classical supersymmetric gauge theories, Phys. Rev. D 53 (1996) 3399 [hep-th/9506098] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  49. [49]
    Y. Nakayama, Index for orbifold quiver gauge theories, Phys. Lett. B 636 (2006) 132 [hep-th/0512280] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    S. Kim, The complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].
  52. [52]
    T.W. Brown, Cut-and-join operators and N = 4 super Yang-Mills, JHEP 05 (2010) 058 [arXiv:1002.2099] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    J. Pasukonis and S. Ramgoolam, From counting to construction of BPS states in N = 4 SYM, JHEP 02 (2011) 078 [arXiv:1010.1683] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    Y. Kimura, Quarter BPS classified by Brauer algebra, JHEP 05 (2010) 103 [arXiv:1002.2424] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    Y. Kimura, Correlation functions and representation bases in free N = 4 super Yang-Mills, Nucl. Phys. B 865 (2012) 568 [arXiv:1206.4844] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    A. Hanany, N. Mekareeya and G. Torri, The Hilbert series of adjoint SQCD, Nucl. Phys. B 825 (2010) 52 [arXiv:0812.2315] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  57. [57]
    N. Jokela, M. Jarvinen and E. Keski-Vakkuri, New results for the SQCD Hilbert series, JHEP 03 (2012) 048 [arXiv:1112.5454] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  58. [58]
    T. Harmark and M. Orselli, Spin matrix theory: a quantum mechanical model of the AdS/CFT correspondence, JHEP 11 (2014) 134 [arXiv:1409.4417] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonU.K.

Personalised recommendations