Advertisement

Localized shocks

  • Daniel A. Roberts
  • Douglas Stanford
  • Leonard Susskind
Open Access
Regular Article - Theoretical Physics

Abstract

We study products of precursors of spatially local operators, \( {W_x}_{{}_n}(tn)\cdot \cdot \cdot {W}_{x_1}\left({t}_1\right) \), where W x (t) = e − iHt W x e iHt . Using chaotic spin-chain numerics and gauge/gravity duality, we show that a single precursor fills a spatial region that grows linearly in t. In a lattice system, products of such operators can be represented using tensor networks. In gauge/gravity duality, they are related to Einstein-Rosen bridges supported by localized shock waves. We find a geometrical correspondence between these two descriptions, generalizing earlier work in the spatially homogeneous case.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Black Holes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    I.A. Morrison and M.M. Roberts, Mutual information between thermo-field doubles and disconnected holographic boundaries, JHEP 07 (2013) 081 [arXiv:1211.2887] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    H. Liu and S.J. Suh, Entanglement tsunami: universal scaling in holographic thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].ADSGoogle Scholar
  8. [8]
    B. Freivogel and L. Susskind, A framework for the landscape, Phys. Rev. D 70 (2004) 126007 [hep-th/0408133] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and transhorizon measurements in AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  11. [11]
    V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of Anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    I. Bena, On the construction of local fields in the bulk of AdS 5 and other spaces, Phys. Rev. D 62 (2000) 066007 [hep-th/9905186] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, Phys. Rev. Lett. 111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    S.G. Avery, B.D. Chowdhury and A. Puhm, Unitarity and fuzzball complementarity:Alice fuzzes but may not even know it!’, JHEP 09 (2013) 012 [arXiv:1210.6996] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    B.D. Chowdhury, Cool horizons lead to information loss, JHEP 10 (2013) 034 [arXiv:1307.5915] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    J. Maldacena, Spacetime from Entanglement, talk given at KITP “Fuzz or Fire” conference, August 19-30, University of California, U.S.A. (2013).Google Scholar
  21. [21]
    B. Swingle, Entanglement renormalization and Holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].ADSGoogle Scholar
  22. [22]
    L. Susskind, Computational complexity and black hole horizons, arXiv:1402.5674 [INSPIRE].
  23. [23]
    L. Susskind, Addendum to computational complexity and black hole horizons, arXiv:1403.5695 [INSPIRE].
  24. [24]
    D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S.H. Shenker and D. Stanford, Multiple shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    S. Leichenauer, Disrupting entanglement of black holes, Phys. Rev. D 90 (2014) 046009 [arXiv:1405.7365] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Bañuls, J. Cirac and M. Hastings, Strong and weak thermalization of infinite nonintegrable quantum systems, Phys. Rev. Lett. 106 (2011) 050405 [arXiv:1007.3957].CrossRefADSGoogle Scholar
  29. [29]
    E.H. Lieb and D.W. Robinson, The finite group velocity of quantum spin systems, Commun. Math. Phys. 28 (1972) 251 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    M.B. Hastings and T. Koma, Spectral gap and exponential decay of correlations, Commun. Math. Phys. 265 (2006) 781 [math-ph/0507008] [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  31. [31]
    M.B. Hastings, Locality in quantum systems, arXiv:1008.5137.
  32. [32]
    S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge U.K. (2011).CrossRefMATHGoogle Scholar
  33. [33]
    L. Susskind, New concepts for old black holes, arXiv:1311.3335 [INSPIRE].
  34. [34]
    J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    D. Amati, M. Ciafaloni and G. Veneziano, Classical and quantum gravity effects from planckian energy superstring collisions, Int. J. Mod. Phys. A 3 (1988) 1615 [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    K. Schoutens, H.L. Verlinde and E.P. Verlinde, Quantum black hole evaporation, Phys. Rev. D 48 (1993) 2670 [hep-th/9304128] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    T. Dray and G. ’t Hooft, The gravitational shock wave of a massless particle, Nucl. Phys. B 253 (1985) 173 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    K. Sfetsos, On gravitational shock waves in curved space-times, Nucl. Phys. B 436 (1995) 721 [hep-th/9408169] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    G. ’t Hooft, The black hole interpretation of string theory, Nucl. Phys. B 335 (1990) 138 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys. Rev. D 52 (1995) 7053 [hep-th/9502074] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, arXiv:1412.6087 [INSPIRE].
  44. [44]
    D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, arXiv:1407.5597 [INSPIRE].
  46. [46]
    T. Dray and G. ’t Hooft, The effect of spherical shells of matter on the Schwarzschild black hole, Commun. Math. Phys. 99 (1985) 613 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    I.H. Redmount, Blue-sheet instability of Schwarzschild wormholes, Prog. Theor. Phys. 73 (1985) 1401.CrossRefADSMATHMathSciNetGoogle Scholar
  48. [48]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  50. [50]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010)2323 [Int. J. Mod. Phys. D 19 (2010) 2429] [arXiv:1005.3035] [INSPIRE].
  52. [52]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  53. [53]
    L. Susskind and Y. Zhao, Switchbacks and the bridge to nowhere, arXiv:1408.2823 [INSPIRE].
  54. [54]
    M.R. Dowling and M.A. Nielsen, The geometry of quantum computation, quant-ph/0701004.
  55. [55]
    G.T. Horowitz and N. Itzhaki, Black holes, shock waves and causality in the AdS/CFT correspondence, JHEP 02 (1999) 010 [hep-th/9901012] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  56. [56]
    B. Zwiebach, Curvature squared terms and string theories, Phys. Lett. B 156 (1985) 315 [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].ADSGoogle Scholar
  59. [59]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Daniel A. Roberts
    • 1
  • Douglas Stanford
    • 2
    • 3
  • Leonard Susskind
    • 2
  1. 1.Center for Theoretical Physics and Department of PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.
  2. 2.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordU.S.A.
  3. 3.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.

Personalised recommendations