Nonlocal scalar quantum field theory from causal sets

  • Alessio Belenchia
  • Dionigi M. T. Benincasa
  • Stefano Liberati
Open Access
Regular Article - Theoretical Physics

Abstract

We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d’Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.

Keywords

Effective field theories Models of Quantum Gravity Space-Time Symmetries 

References

  1. [1]
    S. Liberati, Tests of Lorentz invariance: a 2013 update, Class. Quant. Grav. 30 (2013) 133001 [arXiv:1304.5795] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    D. Mattingly, Modern tests of Lorentz invariance, Living Rev. Rel. 8 (2005) 5 [gr-qc/0502097] [INSPIRE].Google Scholar
  3. [3]
    G. Amelino-Camelia, Quantum-spacetime phenomenology, Living Rev. Rel. 16 (2013) 5 [arXiv:0806.0339] [INSPIRE].Google Scholar
  4. [4]
    S. Hossenfelder, Minimal length scale scenarios for quantum gravity, Living Rev. Rel. 16 (2013) 2 [arXiv:1203.6191] [INSPIRE].Google Scholar
  5. [5]
    S. Gielen and D. Oriti, Quantum cosmology from quantum gravity condensates: cosmological variables and lattice-refined dynamics, New J. Phys. 16 (2014) 123004 [arXiv:1407.8167] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    A. Ashtekar and P. Singh, Loop quantum cosmology: a status report, Class. Quant. Grav. 28 (2011) 213001 [arXiv:1108.0893] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    A. Barrau, C. Rovelli and F. Vidotto, Fast radio bursts and white hole signals, Phys. Rev. D 90 (2014) 127503 [arXiv:1409.4031] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Niedermaier and M. Reuter, The asymptotic safety scenario in quantum gravity, Living Rev. Rel. 9 (2006) 5 [INSPIRE].Google Scholar
  9. [9]
    S. Surya, Directions in causal set quantum gravity, arXiv:1103.6272 [INSPIRE].
  10. [10]
    J. Henson, The causal set approach to quantum gravity, in Approaches to quantum gravity. Towards a new understanding of space and time, D. Oriti ed., Cambridge University Press (2006) [gr-qc/0601121] [INSPIRE].
  11. [11]
    D.M.T. Benincasa and F. Dowker, The scalar curvature of a causal set, Phys. Rev. Lett. 104 (2010) 181301 [arXiv:1001.2725] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    R.D. Sorkin, Does locality fail at intermediate length-scales, in Approaches to quantum gravity. Towards a new understanding of space and time, D. Oriti ed., Cambridge University Press (2006) [gr-qc/0703099] [INSPIRE].
  13. [13]
    S. Aslanbeigi, M. Saravani and R.D. Sorkin, Generalized causal set dAlembertians, JHEP 06 (2014) 024 [arXiv:1403.1622] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    L. Glaser, A closed form expression for the causal set dAlembertian, Class. Quant. Grav. 31 (2014) 095007 [arXiv:1311.1701] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    F. Dowker and L. Glaser, Causal set dAlembertians for various dimensions, Class. Quant. Grav. 30 (2013) 195016 [arXiv:1305.2588] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    S. Johnston, Correction terms for propagators and dAlembertians due to spacetime discreteness, arXiv:1411.2614 [INSPIRE].
  17. [17]
    N. Afshordi, S. Aslanbeigi and R.D. Sorkin, A distinguished vacuum state for a quantum field in a curved spacetime: formalism, features and cosmology, JHEP 08 (2012) 137 [arXiv:1205.1296] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    D.G. Barci, L.E. Oxman and M. Rocca, Canonical quantization of nonlocal field equations, Int. J. Mod. Phys. A 11 (1996) 2111 [hep-th/9503101] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    D. Marolf, Emergent gravity requires (kinematic) non-locality, Phys. Rev. Lett. 114 (2015) 031104 [arXiv:1409.2509] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    M. Jaccard, M. Maggiore and E. Mitsou, Nonlocal theory of massive gravity, Phys. Rev. D 88 (2013) 044033 [arXiv:1305.3034] [INSPIRE].ADSGoogle Scholar
  21. [21]
    D.G. Barci, C.G. Bollini, L.E. Oxman and M.C. Rocca, Nonlocal pseudodifferential operators, hep-th/9606183 [INSPIRE].
  22. [22]
    N. Barnaby and N. Kamran, Dynamics with infinitely many derivatives: the initial value problem, JHEP 02 (2008) 008 [arXiv:0709.3968] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    R.L.P.G. do Amaral and E.C. Marino, Canonical quantization of theories containing fractional powers of the dAlembertian operator, J. Phys. A 25 (1992) 5183 [INSPIRE].
  24. [24]
    C.G. Bollini and J.J. Giambiagi, Lagrangian procedures for higher order field equations, Rev. Bras. Fis. 17 (1987) 14 [INSPIRE].Google Scholar
  25. [25]
    I.S. Gradshteyn and I.M. Ryzhik, Tables of integrals, series, and products, 7th ed., Academic Press, San Diego U.S.A. (2007).Google Scholar
  26. [26]
    O.W. Greenberg, Generalized free fields and models of local field theory, Annals Phys. 16 (1961) 158 [INSPIRE].CrossRefADSMATHGoogle Scholar
  27. [27]
    C.G. Bollini and L.E. Oxman, Propagator for complex mass fields, Int. J. Mod. Phys. A 7 (1992) 6845 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    J.A. Wheeler and R.P. Feynman, Interaction with the absorber as the mechanism of radiation, Rev. Mod. Phys. 17 (1945) 157 [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    A. Gonzalez Domínguez and S.E. Trione, On the Laplace transforms of retarded, Lorentz invariant functions, Adv. Math. 31 (1979) 51 [INSPIRE].CrossRefMATHGoogle Scholar
  30. [30]
    C.G. Bollini and L.E. Oxman, Unitarity and complex mass fields, Int. J. Mod. Phys. A 8 (1993) 3185 [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    S. Johnston, Feynman propagator for a free scalar field on a causal set, Phys. Rev. Lett. 103 (2009) 180401 [arXiv:0909.0944] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    A. Belenchia, D. Benincasa and S. Liberati, in preparation.Google Scholar
  33. [33]
    F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark eds., NIST handbook of mathematical functions, Cambridge University Press, New York U.S.A. (2010).MATHGoogle Scholar
  34. [34]
    D.G. Barci and L.E. Oxman, Asymptotic states in nonlocal field theories, Mod. Phys. Lett. A 12 (1997) 493 [hep-th/9611147] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Alessio Belenchia
    • 1
    • 2
  • Dionigi M. T. Benincasa
    • 1
    • 2
  • Stefano Liberati
    • 1
    • 2
  1. 1.SISSA — International School for Advanced StudiesTriesteItaly
  2. 2.INFN, Sezione di TriesteTriesteItaly

Personalised recommendations