Instanton operators in five-dimensional gauge theories

  • N. Lambert
  • C. Papageorgakis
  • M. Schmidt-Sommerfeld
Open Access
Regular Article - Theoretical Physics

Abstract

We discuss instanton operators in five-dimensional gauge theories. These are defined as disorder operators which create a non-vanishing second Chern class on a foursphere surrounding their insertion point. As such they may be thought of as higherdimensional analogues of three-dimensional monopole (or ‘t Hooft) operators. We argue that they play an important role in the enhancement of the Lorentz symmetry for maximally supersymmetric Yang-Mills to SO(1, 5) at strong coupling.

Keywords

Solitons Monopoles and Instantons Nonperturbative Effects Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Some comments on string dynamics, hep-th/9507121 [INSPIRE].
  2. [2]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    N. Seiberg, Notes on theories with 16 supercharges, Nucl. Phys. Proc. Suppl. 67 (1998) 158 [hep-th/9705117] [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  5. [5]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N}=6 \) superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    N. Lambert, H. Nastase and C. Papageorgakis, 5D Yang-Mills instantons from ABJM Monopoles, Phys. Rev. D 85 (2012) 066002 [arXiv:1111.5619] [INSPIRE].ADSGoogle Scholar
  11. [11]
    C.N. Yang, Generalization of Diracs Monopole to SU(2) Gauge Fields, J. Math. Phys. 19 (1978) 320 [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].ADSGoogle Scholar
  13. [13]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M 5-Branes, D4-branes and Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    C. Papageorgakis and A.B. Royston, Revisiting Soliton Contributions to Perturbative Amplitudes, JHEP 09 (2014) 128 [arXiv:1404.0016] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    H. Samtleben, E. Sezgin and R. Wimmer, (1, 0) superconformal models in six dimensions, JHEP 12 (2011) 062 [arXiv:1108.4060] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    C.-S. Chu, A Theory of Non-Abelian Tensor Gauge Field with Non-Abelian Gauge Symmetry G × G, Nucl. Phys. B 866 (2013) 43[arXiv:1108.5131] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    F. Bonetti, T.W. Grimm and S. Hohenegger, Non-Abelian Tensor Towers and (2,0) Superconformal Theories, JHEP 05 (2013) 129 [arXiv:1209.3017] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    C. Sämann and M. Wolf, Non-Abelian Tensor Multiplet Equations from Twistor Space, Commun. Math. Phys. 328 (2014) 527 [arXiv:1205.3108] [INSPIRE].CrossRefADSMATHGoogle Scholar
  19. [19]
    P.-M. Ho and Y. Matsuo, Aspects of Effective Theory for Multiple M 5-Branes Compactified On Circle, JHEP 12 (2014) 154 [arXiv:1409.4060] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    I.L. Buchbinder and N.G. Pletnev, Construction of 6D supersymmetric field models in N =(1,0) harmonic superspace, Nucl. Phys. B 892 (2015) 21[arXiv:1411.1848] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  21. [21]
    N.R. Constable, R.C. Myers and O. Tafjord, NonAbelian brane intersections, JHEP 06 (2001) 023 [hep-th/0102080] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    K.A. Intriligator and N. Seiberg, Aspects of 3d \( \mathcal{N}=2 \) Chern-Simons-Matter Theories, JHEP 07 (2013) 079 [arXiv:1305.1633] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    J. Bagger, N. Lambert, S. Mukhi and C. Papageorgakis, Multiple Membranes in M-theory, Phys. Rept. 527 (2013) 1 [arXiv:1203.3546] [INSPIRE].CrossRefADSMATHMathSciNetGoogle Scholar
  24. [24]
    P. Goddard, J. Nuyts and D.I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    H.-C. Kim and K. Lee, Supersymmetric M5 Brane Theories on R × CP 2, JHEP 07 (2013) 072 [arXiv:1210.0853] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    M. Brigante, G. Festuccia and H. Liu, Inheritance principle and non-renormalization theorems at finite temperature, Phys. Lett. B 638 (2006) 538 [hep-th/0509117] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    O. Bergman and D. Rodríguez-Gómez, 5d quivers and their AdS 6 duals, JHEP 07 (2012) 171 [arXiv:1206.3503] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    D.L. Jafferis and S.S. Pufu, Exact results for five-dimensional superconformal field theories with gravity duals, JHEP 05 (2014) 032 [arXiv:1207.4359] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    D. Bashkirov, A comment on the enhancement of global symmetries in superconformal SU(2) gauge theories in 5D, arXiv:1211.4886 [INSPIRE].
  31. [31]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5d superconformal indices at large-N and holography, JHEP 08 (2013) 081 [arXiv:1305.6870] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal index, JHEP 01 (2014) 079 [arXiv:1310.2150] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-Brane Webs, Symmetry Enhancement and Duality in 5d Supersymmetric Gauge Theory, JHEP 03 (2014) 112 [arXiv:1311.4199] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, arXiv:1410.2806 [INSPIRE].
  35. [35]
    V. Mitev, E. Pomoni, M. Taki and F. Yagi, Fiber-Base Duality and Global Symmetry Enhancement, arXiv:1411.2450 [INSPIRE].

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • N. Lambert
    • 1
  • C. Papageorgakis
    • 2
  • M. Schmidt-Sommerfeld
    • 3
    • 4
  1. 1.Department of MathematicsKing’s College LondonLondonU.K.
  2. 2.RST and School of Physics and AstronomyQueen Mary University of LondonLondonU.K.
  3. 3.Arnold-Sommerfeld-Center für Theoretische Physik, LMU MünchenMünchenGermany
  4. 4.Excellence Cluster Universe, Technische Universität MünchenGarchingGermany

Personalised recommendations