Advertisement

Vacuum stability and the MSSM Higgs mass

  • Nikita BlinovEmail author
  • David E. Morrissey
Open Access
Article

Abstract

In the Minimal Supersymmetric Standard Model (MSSM), a Higgs boson mass of 125 GeV can be obtained with moderately heavy scalar top superpartners provided they are highly mixed. The source of this mixing, a soft trilinear stop-stop-Higgs coupling, can result in the appearance of charge- and color-breaking minima in the scalar potential of the theory. If such a vacuum exists and is energetically favorable, the Standard Model-like vacuum can decay to it via quantum tunnelling. In this work we investigate the conditions under which such exotic vacua arise, and we compute the tunnelling rates to them. Our results provide new constraints on the scalar top quarks of the MSSM.

Keywords

Beyond Standard Model Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.P. Martin, A supersymmetry primer, in Perspectives on supersymmetry II, G.L. Kane ed., World Scientific, Singapore (2010), hep-ph/9709356 [INSPIRE].
  2. [2]
    R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    C. Wymant, Optimising stop naturalness, Phys. Rev. D 86 (2012) 115023 [arXiv:1208.1737] [INSPIRE].ADSGoogle Scholar
  4. [4]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE]. ADSGoogle Scholar
  6. [6]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M.S. Carena et al., Reconciling the two loop diagrammatic and effective field theory computations of the mass of the lightest CP-even Higgs boson in the MSSM, Nucl. Phys. B 580 (2000) 29 [hep-ph/0001002] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Casas, J. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466] [hep-ph/9407389] [INSPIRE].
  13. [13]
    R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J.M. Frere, D.R.T. Jones and S. Raby, Fermion masses and induction of the weak scale by supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Claudson, L.J. Hall and I. Hinchliffe, Low-energy supergravity: false vacua and vacuous predictions, Nucl. Phys. B 228 (1983) 501 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Gamberini, G. Ridolfi and F. Zwirner, On radiative gauge symmetry breaking in the minimal supersymmetric model, Nucl. Phys. B 331 (1990) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Falk, K.A. Olive, L. Roszkowski and M. Srednicki, New constraints on superpartner masses, Phys. Lett. B 367 (1996) 183 [hep-ph/9510308] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Riotto and E. Roulet, Vacuum decay along supersymmetric flat directions, Phys. Lett. B 377 (1996) 60 [hep-ph/9512401] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414] [INSPIRE].ADSGoogle Scholar
  21. [21]
    J. Casas, A. Lleyda and C. Muñoz, Some implications of charge and color breaking in the MSSM, Phys. Lett. B 389 (1996) 305 [hep-ph/9606212] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Le Mouel, Optimal charge and color breaking conditions in the MSSM, Nucl. Phys. B 607 (2001) 38 [hep-ph/0101351] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C. Le Mouel, Charge and color breaking conditions associated to the top quark Yukawa coupling, Phys. Rev. D 64 (2001) 075009 [hep-ph/0103341] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M.S. Carena, M. Quirós and C. Wagner, Opening the window for electroweak baryogenesis, Phys. Lett. B 380 (1996) 81 [hep-ph/9603420] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J.M. Cline, G.D. Moore and G. Servant, Was the electroweak phase transition preceded by a color broken phase?, Phys. Rev. D 60 (1999) 105035 [hep-ph/9902220] [INSPIRE].ADSGoogle Scholar
  26. [26]
    H.H. Patel, M.J. Ramsey-Musolf and M.B. Wise, Color breaking in the early universe, Phys. Rev. D 88 (2013) 015003 [arXiv:1303.1140] [INSPIRE].ADSGoogle Scholar
  27. [27]
    B.M. Kastening, Renormalization group improvement of the effective potential in massive phi**4 theory, Phys. Lett. B 283 (1992) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Jackiw, Functional evaluation of the effective potential, Phys. Rev. D 9 (1974) 1686 [INSPIRE].ADSGoogle Scholar
  30. [30]
    H.H. Patel and M.J. Ramsey-Musolf, Baryon washout, electroweak phase transition and perturbation theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    N.K. Nielsen, On the gauge dependence of spontaneous symmetry breaking in gauge theories, Nucl. Phys. B 101 (1975) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Fukuda and T. Kugo, Gauge invariance in the effective action and potential, Phys. Rev. D 13 (1976) 3469 [INSPIRE].ADSGoogle Scholar
  33. [33]
    M. Garny and T. Konstandin, On the gauge dependence of vacuum transitions at finite temperature, JHEP 07 (2012) 189 [arXiv:1205.3392] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D. Metaxas and E.J. Weinberg, Gauge independence of the bubble nucleation rate in theories with radiative symmetry breaking, Phys. Rev. D 53 (1996) 836 [hep-ph/9507381] [INSPIRE].ADSGoogle Scholar
  35. [35]
    F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE]ADSCrossRefGoogle Scholar
  36. [36]
  37. [37]
    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  38. [38]
    C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].ADSGoogle Scholar
  39. [39]
    G.V. Dunne and H. Min, Beyond the thin-wall approximation: Precise numerical computation of prefactors in false vacuum decay, Phys. Rev. D 72 (2005) 125004 [hep-th/0511156] [INSPIRE].ADSGoogle Scholar
  40. [40]
    H. Min, On the prefactor in false vacuum decay, J. Phys. A 39 (2006) 6551 [INSPIRE].ADSGoogle Scholar
  41. [41]
    E.J. Weinberg, Vacuum decay in theories with symmetry breaking by radiative corrections, Phys. Rev. D 47 (1993) 4614 [hep-ph/9211314] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Kusenko, Improved action method for analyzing tunneling in quantum field theory, Phys. Lett. B 358 (1995) 51 [hep-ph/9504418] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    T. Konstandin and S.J. Huber, Numerical approach to multi dimensional phase transitions, JCAP 06 (2006) 021 [hep-ph/0603081] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J.-h. Park, Constrained potential method for false vacuum decays, JCAP 02 (2011) 023 [arXiv:1011.4936] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars, Eur. Phys. J. C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, New J. Phys. 15 (2013) 043003 [arXiv:1208.1765] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  51. [51]
    V. Barger, P. Huang, M. Ishida and W.-Y. Keung, Scalar-top masses from SUSY loops with 125 GeV mh and precise Mw, Phys. Lett. B 718 (2013) 1024 [arXiv:1206.1777] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Drees and K. Hagiwara, Supersymmetric contribution to the electroweak ρ parameter, Phys. Rev. D 42 (1990) 1709 [INSPIRE].ADSGoogle Scholar
  55. [55]
    S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept. 425 (2006) 265 [hep-ph/0412214] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Ciuchini, G. Degrassi, P. Gambino and G. Giudice, Next-to-leading QCD corrections to BX s γ in supersymmetry, Nucl. Phys. B 534 (1998) 3 [hep-ph/9806308] [INSPIRE].ADSGoogle Scholar
  58. [58]
    B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative B-meson decay, Phys. Rev. D 78 (2008) 077501 [Erratum ibid. D 84 (2011) 059903] [arXiv:0802.1413] [INSPIRE].
  59. [59]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-hadron, C-hadron and τ-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  60. [60]
    A. Arbey and F. Mahmoudi, SuperIso relic: a program for calculating relic density and flavor physics observables in Supersymmetry, Comput. Phys. Commun. 181 (2010) 1277 [arXiv:0906.0369] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    ATLAS collaboration, Search for direct third-generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, JHEP 10 (2013) 189 [arXiv:1308.2631] [INSPIRE].ADSGoogle Scholar
  62. [62]
    ATLAS collaboration, Search for pair-produced top squarks decaying into a charm quark and the lightest neutralinos with 20.3 fb 1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2013-068 (2013).
  63. [63]
    CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].ADSGoogle Scholar
  64. [64]
    CMS collaboration, Search for supersymmetry using razor variables in events with b-jets in pp collisions at 8 TeV, CMS-PAS-SUS-13-004 (2013).
  65. [65]
    M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The effective theory of the light stop scenario, JHEP 10 (2008) 062 [arXiv:0806.4297] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J. Fan and M. Reece, A new look at Higgs constraints on stops, arXiv:1401.7671 [INSPIRE].
  67. [67]
    J. Hisano, K. Kawagoe, R. Kitano and M.M. Nojiri, Scenery from the top: study of the third generation squarks at CERN LHC, Phys. Rev. D 66 (2002) 115004 [hep-ph/0204078] [INSPIRE].ADSGoogle Scholar
  68. [68]
    K. Rolbiecki, J. Tattersall and G. Moortgat-Pick, Towards measuring the stop mixing angle at the LHC, Eur. Phys. J. C 71 (2011) 1517 [arXiv:0909.3196] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M. Blanke, D. Curtin and M. Perelstein, SUSY-Yukawa sum rule at the LHC, Phys. Rev. D 82 (2010)035020 [arXiv:1004.5350] [INSPIRE].ADSGoogle Scholar
  70. [70]
    M. Perelstein and M. Saelim, SUSY-Yukawa sum rule at the LHC and the ILC, arXiv:1201.5839 [INSPIRE].
  71. [71]
    M. Berggren, R. Keranen, H. Kluge and A. Sopczak, Study of scalar top quarks at a future e + e linear collider, hep-ph/9911345 [INSPIRE].
  72. [72]
    E. Boos et al., Polarization in sfermion decays: determining tan β and trilinear couplings, Eur. Phys. J. C 30 (2003) 395 [hep-ph/0303110] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    G.F. Giudice and A. Kusenko, A strongly interacting phase of the minimal supersymmetric model, Phys. Lett. B 439 (1998) 55 [hep-ph/9805379] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    P. Hernández, N. Rius and V. Sanz, Trilinear couplings and scalar bound states in supersymmetric extensions of the standard model, Nucl. Phys. Proc. Suppl. 95 (2001) 272 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J.M. Cornwall, A. Kusenko, L. Pearce and R. Peccei, Can supersymmetry breaking lead to electroweak symmetry breaking via formation of scalar bound states?, Phys. Lett. B 718 (2013)951 [arXiv:1210.6433] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    L. Pearce, A. Kusenko and R.D. Peccei, Phenomenology of supersymmetric models with a symmetry-breaking seesaw mechanism, Phys. Rev. D 88 (2013) 075011 [arXiv:1307.6157] [INSPIRE].ADSGoogle Scholar
  77. [77]
    J. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Stability of the CMSSM against sfermion VEVs, JHEP 12 (2013) 103 [arXiv:1309.7212] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    D. Chowdhury, R.M. Godbole, K.A. Mohan and S.K. Vempati, Charge and color breaking constraints in MSSM after the Higgs discovery at LHC, arXiv:1310.1932 [INSPIRE].
  79. [79]
    N. Blinov and D.E. Morrissey, Charge and color breaking constraints in the minimal supersymmetric standard model, arXiv:1309.7397 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.TRIUMFVancouverCanada
  2. 2.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations