Advertisement

An inverse scattering formalism for STU supergravity

  • Despoina Katsimpouri
  • Axel KleinschmidtEmail author
  • Amitabh Virmani
Open Access
Article

Abstract

STU supergravity becomes an integrable system for solutions that effectively only depend on two variables. This class of solutions includes the Kerr solution and its charged generalizations that have been studied in the literature. We here present an inverse scattering method that allows to systematically construct solutions of this integrable system. The method is similar to the one of Belinski and Zakharov for pure gravity but uses a different linear system due to Breitenlohner and Maison and here requires some technical modifications. We illustrate this method by constructing a four-charge rotating solution from flat space. A generalization to other set-ups is also discussed.

Keywords

Black Holes in String Theory Supergravity Models String Duality Integrable Hierarchies 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V.A. Belinsky and V.E. Zakharov, Integration of the Einstein Equations by the Inverse Scattering Problem Technique and the Calculation of the Exact Soliton Solutions, Sov. Phys. JETP 48 (1978) 985 [Zh. Eksp. Teor. Fiz. 75 (1978) 1953] [INSPIRE].
  2. [2]
    V.A. Belinsky and V.E. Sakharov, Stationary Gravitational Solitons with Axial Symmetry, Sov. Phys. JETP 50 (1979) 1 [Zh. Eksp. Teor. Fiz. 77 (1979) 3] [INSPIRE].
  3. [3]
    V. Belinski and E. Verdaguer, Gravitational solitons, Cambridge Univ. Press, U.K., 2001.CrossRefzbMATHGoogle Scholar
  4. [4]
    R. Emparan and H.S. Reall, Black Holes in Higher Dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [INSPIRE].Google Scholar
  5. [5]
    H. Iguchi, K. Izumi and T. Mishima, Systematic solution-generation of five-dimensional black holes, Prog. Theor. Phys. Suppl. 189 (2011) 93 [arXiv:1106.0387] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.V. Rocha, M.J. Rodriguez, O. Varela and A. Virmani, Charged black rings from inverse scattering, Gen. Rel. Grav. 45 (2013) 2099 [arXiv:1305.4969] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    J. Ehlers, Transformations of static exterior solutions of Einsteins gravitational field equations into different solutions by means of conformal mappings, in Les Théories Physiques de la Gravitation, CNRS, Paris, 1959, pg. 275.Google Scholar
  8. [8]
    E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    N. Marcus and J.H. Schwarz, Three-Dimensional Supergravity Theories, Nucl. Phys. B 228 (1983)145 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    P. Breitenlohner, D. Maison and G.W. Gibbons, Four-Dimensional Black Holes from Kaluza-Klein Theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    P. Figueras, E. Jamsin, J.V. Rocha and A. Virmani, Integrability of Five Dimensional Minimal Supergravity and Charged Rotating Black Holes, Class. Quant. Grav. 27 (2010) 135011 [arXiv:0912.3199] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    P. Breitenlohner and D. Maison, On the Geroch Group, Annales Poincaré Phys. Theor. 46 (1987)215 [INSPIRE].zbMATHMathSciNetGoogle Scholar
  13. [13]
    D. Katsimpouri, A. Kleinschmidt and A. Virmani, Inverse Scattering and the Geroch Group, JHEP 02 (2013) 011 [arXiv:1211.3044] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    P. Breitenlohner and D. Maison, Solitons in Kaluza-Klein Theories, unpublished notes, June 1986.Google Scholar
  15. [15]
    M.J. Duff, J.T. Liu and J. Rahmfeld, Four-dimensional string-string-string triality, Nucl. Phys. B 459 (1996) 125 [hep-th/9508094] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W.K. Wong, STU black holes and string triality, Phys. Rev. D 54 (1996) 6293 [hep-th/9608059] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    Z.-W. Chong, M. Cvetič, H. Lü and C.N. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Cvetič, G.W. Gibbons, C.N. Pope and Z.H. Saleem, Electrodynamics of Black Holes in STU Supergravity, arXiv:1310.5717 [INSPIRE].
  19. [19]
    D.D.K. Chow and G. Compère, Seed for general rotating non-extremal black holes of N = 8 supergravity, Class. Quant. Grav. 31 (2014) 022001 [arXiv:1310.1925] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Cvetič and D. Youm, Entropy of nonextreme charged rotating black holes in string theory, Phys. Rev. D 54 (1996) 2612 [hep-th/9603147] [INSPIRE].ADSGoogle Scholar
  21. [21]
    G. Bossard, H. Nicolai and K.S. Stelle, Universal BPS structure of stationary supergravity solutions, JHEP 07 (2009) 003 [arXiv:0902.4438] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    G. Bossard, Y. Michel and B. Pioline, Extremal black holes, nilpotent orbits and the true fake superpotential, JHEP 01 (2010) 038 [arXiv:0908.1742] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    H. Nicolai, Two-dimensional gravities and supergravities as integrable system, Lect. Notes Phys. 396 (1991) 231, in Proceedings of Recent aspects of quantum fields, pg. 43, Schladming, May 1991.Google Scholar
  24. [24]
    M. Cvetič and D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476 (1996) 118 [hep-th/9603100] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1 − D5 − P bound states, Phys. Rev. D 71 (2005) 124030 [hep-th/0504181] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    T. Harmark, Stationary and axisymmetric solutions of higher-dimensional general relativity, Phys. Rev. D 70 (2004) 124002 [hep-th/0408141] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    S. Hollands and S. Yazadjiev, Uniqueness theorem for 5-dimensional black holes with two axial Killing fields, Commun. Math. Phys. 283 (2008) 749 [arXiv:0707.2775] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    Y. Chen and E. Teo, Rod-structure classification of gravitational instantons with U(1) × U(1) isometry, Nucl. Phys. B 838 (2010) 207 [arXiv:1004.2750] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    S.D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys. 53 (2005)793 [hep-th/0502050] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    I. Bena and N.P. Warner, Resolving the Structure of Black Holes: Philosophizing with a Hammer, arXiv:1311.4538 [INSPIRE].
  31. [31]
    A. Virmani, Subtracted Geometry From Harrison Transformations, JHEP 07 (2012) 086 [arXiv:1203.5088] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Despoina Katsimpouri
    • 1
  • Axel Kleinschmidt
    • 1
    • 2
    Email author
  • Amitabh Virmani
    • 3
  1. 1.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany
  2. 2.International Solvay Institutes ULB-Campus Plaine CP231BrusselsBelgium
  3. 3.Institute of PhysicsBhubaneshwarIndia

Personalised recommendations