Bootstrapping the 3d Ising twist defect

  • Davide Gaiotto
  • Dalimil MazacEmail author
  • Miguel F. Paulos
Open Access


Recent numerical results point to the existence of a conformally invariant twist defect in the critical 3d Ising model. In this note we show that this fact is supported by both epsilon expansion and conformal bootstrap calculations. We find that our results are in good agreement with the numerical data. We also make new predictions for operator dimensions and OPE coefficients from the bootstrap approach. In the process we derive universal bounds on one-dimensional conformal field theories and conformal line defects.


Conformal and W Symmetry Renormalization Group 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept. 368 (2002) 549 [cond-mat/0012164] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin et al., Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSGoogle Scholar
  3. [3]
    C. Beem, L. Rastelli and B.C. van Rees, The N = 4 Superconformal Bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, arXiv:1310.3757 [INSPIRE].
  5. [5]
    F. Caracciolo and V.S. Rychkov, Rigorous Limits on the Interaction Strength in Quantum Field Theory, Phys. Rev. D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. El-Showk and M.F. Paulos, Bootstrapping Conformal Field Theories with the Extremal Functional Method, arXiv:1211.2810 [INSPIRE].
  7. [7]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    F. Gliozzi, More constraining conformal bootstrap, Phys. Rev. Lett. 111 (2013) 161602 [arXiv:1307.3111] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) Vector Models, arXiv:1307.6856 [INSPIRE].
  11. [11]
    S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin et al., Conformal Field Theories in Fractional Dimensions, arXiv:1309.5089 [INSPIRE].
  12. [12]
    P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    D. Poland and D. Simmons-Duffin, Bounds on 4D Conformal and Superconformal Field Theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R. Rattazzi, S. Rychkov and A. Vichi, Central Charge Bounds in 4D Conformal Field Theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].ADSGoogle Scholar
  17. [17]
    R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D Conformal Field Theories with Global Symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    V.S. Rychkov and A. Vichi, Universal Constraints on Conformal Operator Dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    A. Vichi, A New Method to Explore Conformal Field Theories in Any Dimension, Ph.D. Thesis, EPFL (2011), pg. 164.Google Scholar
  21. [21]
    A. Vichi, Improved bounds for CFTs with global symmetries, JHEP 01 (2012) 162 [arXiv:1106.4037] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    H.W. Diehl and S. Dietrich, Field-theoretical approach to multicritical behavior near free surfaces, Phys. Rev. B 24 (1981) 2878 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    K. Binder and D. Landau, Critical phenomena at surfaces, Physica A: Statistical Mechanics and its Applications 163 (1990) 17.ADSCrossRefGoogle Scholar
  25. [25]
    M. Billó, M. Caselle, D. Gaiotto, F. Gliozzi, M. Meineri et al., Line defects in the 3d Ising model, JHEP 07 (2013) 055 [arXiv:1304.4110] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K.G. Wilson and M.E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28 (1972) 240 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Le Guillou and J. Zinn-Justin, Accurate critical exponents from the ε-expansion, Journal de Physique Lettres 46 (1985) 137.CrossRefGoogle Scholar
  28. [28]
    A. Kolezhuk, S. Sachdev, R. R. Biswas, and P. Chen, Theory of quantum impurities in spin liquids, Phys. Rev. B 74 (2006) 165114.ADSCrossRefGoogle Scholar
  29. [29]
    J. L. Cardy, Boundary conditions in conformal field theory, Academic Press (1990).Google Scholar
  30. [30]
    F.A. Dolan and H. Osborn, Conformal Partial Waves: Further Mathematical Results, arXiv:1108.6194 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Davide Gaiotto
    • 1
  • Dalimil Mazac
    • 1
    Email author
  • Miguel F. Paulos
    • 2
  1. 1.Perimeter InstituteWaterlooCanada
  2. 2.Department of PhysicsBrown UniversityProvidenceU.S.A.

Personalised recommendations