Synergies between neutrino oscillation experiments: an ‘adequate’ configuration for LBNO

  • Monojit Ghosh
  • Pomita Ghoshal
  • Srubabati Goswami
  • Sushant K. RautEmail author
Open Access


Determination of the neutrino mass hierarchy, octant of the mixing angle θ 23 and the CP violating phase δ CP are the unsolved problems in neutrino oscillation physics today. In this paper our aim is to obtain the minimum exposure required for the proposed Long Baseline Neutrino Oscillation (LBNO) experiment to determine the above unknowns. We emphasize on the advantage of exploiting the synergies offered by the existing and upcoming long-baseline and atmospheric neutrino experiments in economising the LBNO configuration. In particular, we do a combined analysis for LBNO, T2K, NOνA and INO. We consider three prospective LBNO setups — CERN-Pyhäsalmi (2290 km), CERN-Slanic (1500 km) and CERN-Fréjus (130 km) and evaluate the adequate exposure required in each case. Our analysis shows that the exposure required from LBNO can be reduced considerably due to the synergies arising from the inclusion of the other experiments.


Neutrino Physics CP violation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  5. [5]
    G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T2K collaboration, M. Wilking, The latest results from t2k on the neutrino oscillation and interactions, talk given at the EPS High Energy Physics Conference 2013, 18-24 July 2013, Stockholm, Sweden,
  8. [8]
    T2K collaboration, Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019 [INSPIRE].
  9. [9]
    NOvA collaboration, D. Ayres et al., NOvA: Proposal to build a 30 kiloton off-axis detector to study ν(μ) → ν(e) oscillations in the NuMI beamline, hep-ex/0503053.
  10. [10]
    V. Barger, D. Marfatia and K. Whisnant, Off-axis beams and detector clusters: Resolving neutrino parameter degeneracies, Phys. Rev. D 66 (2002) 053007 [hep-ph/0206038] [INSPIRE].
  11. [11]
    J. Burguet-Castell, M. Gavela, J. Gomez-Cadenas, P. Hernández and O. Mena, Superbeams plus neutrino factory: The Golden path to leptonic CP-violation, Nucl. Phys. B 646 (2002) 301 [hep-ph/0207080] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V. Barger, D. Marfatia and K. Whisnant, How two neutrino superbeam experiments do better than one, Phys. Lett. B 560 (2003) 75 [hep-ph/0210428] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    P. Huber, M. Lindner and W. Winter, Synergies between the first generation JHF-SK and NuMI superbeam experiments, Nucl. Phys. B 654 (2003) 3 [hep-ph/0211300] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    H. Minakata and H. Sugiyama, Exploring leptonic CP-violation by reactor and neutrino superbeam experiments, Phys. Lett. B 580 (2004) 216 [hep-ph/0309323] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    O. Mena and S.J. Parke, Untangling CP-violation and the mass hierarchy in long baseline experiments, Phys. Rev. D 70 (2004) 093011 [hep-ph/0408070] [INSPIRE].ADSGoogle Scholar
  16. [16]
    M. Ishitsuka, T. Kajita, H. Minakata and H. Nunokawa, Resolving neutrino mass hierarchy and CP degeneracy by two identical detectors with different baselines, Phys. Rev. D 72 (2005) 033003 [hep-ph/0504026] [INSPIRE].ADSGoogle Scholar
  17. [17]
    P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP-violation in neutrino oscillations from upcoming superbeam and reactor experiments, JHEP 11 (2009) 044 [arXiv:0907.1896] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Prakash, S.K. Raut and S.U. Sankar, Getting the Best Out of T2K and NOvA, Phys. Rev. D 86 (2012) 033012 [arXiv:1201.6485] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S.K. Agarwalla, S. Prakash, S.K. Raut and S.U. Sankar, Potential of optimized NOvA for large θ (13) & combined performance with a LArTPC & T2K, JHEP 12 (2012) 075 [arXiv:1208.3644] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.K. Agarwalla, S. Prakash and S.U. Sankar, Resolving the octant of theta23 with T2K and NOvA, JHEP 07 (2013) 131 [arXiv:1301.2574] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Blennow, P. Coloma, A. Donini and E. Fernandez-Martinez, Gain fractions of future neutrino oscillation facilities over T2K and NOvA, JHEP 07 (2013) 159 [arXiv:1303.0003] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Chatterjee, P. Ghoshal, S. Goswami and S.K. Raut, Octant sensitivity for large θ13 in atmospheric and long baseline neutrino experiments, JHEP 06 (2013) 010 [arXiv:1302.1370] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Ghosh, P. Ghoshal, S. Goswami and S.K. Raut, Can atmospheric neutrino experiments provide the first hint of leptonic CP-violation?, Phys. Rev. D 89 (2014) 011301 [arXiv:1306.2500] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P. Machado, H. Minakata, H. Nunokawa and R.Z. Funchal, What can we learn about the lepton CP phase in the next 10 years?, arXiv:1307.3248 [INSPIRE].
  25. [25]
    M. Banuls, G. Barenboim and J. Bernabeu, Medium effects for terrestrial and atmospheric neutrino oscillations, Phys. Lett. B 513 (2001) 391 [hep-ph/0102184] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Bernabeu, S. Palomares-Ruiz, A. Perez and S. Petcov, The Earth mantle core effect in matter induced asymmetries for atmospheric neutrino oscillations, Phys. Lett. B 531 (2002) 90 [hep-ph/0110071] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Bernabeu, S. Palomares Ruiz and S. Petcov, Atmospheric neutrino oscillations, theta(13) and neutrino mass hierarchy, Nucl. Phys. B 669 (2003) 255 [hep-ph/0305152] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    K. Abe et al., Letter of Intent: The Hyper-Kamiokande Experiment — Detector Design and Physics Potential —, arXiv:1109.3262 [INSPIRE].
  29. [29]
    J.-E. Campagne, M. Maltoni, M. Mezzetto and T. Schwetz, Physics potential of the CERN-MEMPHYS neutrino oscillation project, JHEP 04 (2007) 003 [hep-ph/0603172] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
  31. [31]
    IceCube and PINGU collaborations, M. Aartsen et al., PINGU Sensitivity to the Neutrino Mass Hierarchy, arXiv:1306.5846 [INSPIRE].
  32. [32]
    R. Gandhi, P. Ghoshal, S. Goswami and S.U. Sankar, Resolving the Mass Hierarchy with Atmospheric Neutrinos using a Liquid Argon Detector, Phys. Rev. D 78 (2008) 073001 [arXiv:0807.2759] [INSPIRE].ADSGoogle Scholar
  33. [33]
    V. Barger et al., Configuring the Long-Baseline Neutrino Experiment, Phys. Rev. D 89 (2014) 011302 [arXiv:1307.2519] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Blennow and T. Schwetz, Identifying the Neutrino mass Ordering with INO and NOvA, JHEP 08 (2012) 058 [Erratum ibid. 1211 (2012) 098] [arXiv:1203.3388] [INSPIRE].
  35. [35]
    A. Ghosh, T. Thakore and S. Choubey, Determining the Neutrino Mass Hierarchy with INO, T2K, NOvA and Reactor Experiments, JHEP 04 (2013) 009 [arXiv:1212.1305] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Thakore, A. Ghosh, S. Choubey and A. Dighe, The Reach of INO for Atmospheric Neutrino Oscillation Parameters, JHEP 05 (2013) 058 [arXiv:1303.2534] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Ghosh and S. Choubey, Measuring the Mass Hierarchy with Muon and Hadron Events in Atmospheric Neutrino Experiments, JHEP 10 (2013) 174 [arXiv:1306.1423] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Ribordy and A.Y. Smirnov, Improving the neutrino mass hierarchy identification with inelasticity measurement in PINGU and ORCA, Phys. Rev. D 87 (2013) 113007 [arXiv:1303.0758] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S.K. Agarwalla, T. Li, O. Mena and S. Palomares-Ruiz, Exploring the Earth matter effect with atmospheric neutrinos in ice, arXiv:1212.2238 [INSPIRE].
  40. [40]
    W. Winter, Neutrino mass hierarchy determination with IceCube-PINGU, Phys. Rev. D 88 (2013) 013013 [arXiv:1305.5539] [INSPIRE].ADSGoogle Scholar
  41. [41]
    INO collaboration, N.K. Mondal, Future atmospheric neutrino experiments, talk given at the International Workshop on Neutrino Factories, Super Beams and Beta Beams: NuFact 2013, 19-24 August 2013, Beijing, China,
  42. [42]
    LBNE collaboration, C. Adams et al., Scientific Opportunities with the Long-Baseline Neutrino Experiment, arXiv:1307.7335 [INSPIRE].
  43. [43]
    P. Coloma, T. Li and S. Pascoli, A Comparative Study of Long-Baseline Superbeams within LAGUNA for large θ 13, arXiv:1206.4038 [INSPIRE].
  44. [44]
    A. Stahl et al., Expression of Interest for a very long baseline neutrino oscillation experiment (LBNO), CERN-SPSC-2012-021 (2012).
  45. [45]
    S.K. Agarwalla, T. Li and A. Rubbia, An Incremental approach to unravel the neutrino mass hierarchy and CP-violation with a long-baseline Superbeam for large θ 13, JHEP 05 (2012) 154 [arXiv:1109.6526] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M.D. Messier, Evidence for neutrino mass from observations of atmospheric neutrinos with Super-Kamiokande, Ph.D. Thesis, Boston university, Boston U.S.A. (1999).Google Scholar
  49. [49]
    E. Paschos and J. Yu, Neutrino interactions in oscillation experiments, Phys. Rev. D 65 (2002) 033002 [hep-ph/0107261] [INSPIRE].ADSGoogle Scholar
  50. [50]
    NOνA collaboration, R. Patterson, The noνa experiment: Status and outlook, talk given at the Neutrino 2012 Conference, 3-9 June 2012, Kyoto, Japan,
  51. [51]
    M. Fechner, Détermination des performances attendues sur la recherche de l’oscillation ν μ → ν e dans l’expérience T2K depuis l’étude des données recueillies dans l’expérience K2K, Ph.D. Thesis, Université Paris XI, Paris France (2006), DAPNIA-2006-01-T.Google Scholar
  52. [52]
    T2K collaboration, I. Kato, Status of the T2K experiment, J. Phys. Conf. Ser. 136 (2008) 022018 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Huber and J. Kopp, Two experiments for the price of one? — The role of the second oscillation maximum in long baseline neutrino experiments, JHEP 03 (2011) 013 [Erratum ibid. 1105 (2011) 024] [arXiv:1010.3706] [INSPIRE].
  54. [54]
    A. Longhin, Neutrino fluxes for the LAGUNA sites,
  55. [55]
    MEMPHYS collaboration, L. Agostino et al., Study of the performance of a large scale water-Cherenkov detector (MEMPHYS), JCAP 01 (2013) 024 [arXiv:1206.6665] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Daya Bay collaboration, Prospects For Precision Measurements with Reactor Antineutrinos at Daya Bay, arXiv:1309.7961 [INSPIRE].
  57. [57]
    H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Another possible way to determine the neutrino mass hierarchy, Phys. Rev. D 72 (2005) 013009 [hep-ph/0503283] [INSPIRE].ADSGoogle Scholar
  58. [58]
    A. de Gouvêa, J. Jenkins and B. Kayser, Neutrino mass hierarchy, vacuum oscillations and vanishing |U e3|, Phys. Rev. D 71 (2005) 113009 [hep-ph/0503079] [INSPIRE].ADSGoogle Scholar
  59. [59]
    S.K. Raut, Effect of non-zero theta(13) on the measurement of θ 23, Mod. Phys. Lett. A 28 (2013) 1350093 [arXiv:1209.5658] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    X. Qian et al., Statistical Evaluation of Experimental Determinations of Neutrino Mass Hierarchy, Phys. Rev. D 86 (2012) 113011 [arXiv:1210.3651] [INSPIRE].ADSGoogle Scholar
  61. [61]
    E. Ciuffoli, J. Evslin and X. Zhang, Confidence in a neutrino mass hierarchy determination, JHEP 01 (2014) 095 [arXiv:1305.5150] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, JHEP 03 (2014) 028 [arXiv:1311.1822] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Blennow, On the Bayesian approach to neutrino mass ordering, JHEP 01 (2014) 139 [arXiv:1311.3183] [INSPIRE].CrossRefGoogle Scholar
  64. [64]
    LAGUNA-LBNO collaboration, S.K. Agarwalla et al., The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment, arXiv:1312.6520 [INSPIRE].
  65. [65]
    M. Ghosh, P. Ghoshal, S. Goswami and S.K. Raut, Evidence for leptonic CP phase from NOνA, T2K and ICAL: A chronological progression, arXiv:1401.7243 [INSPIRE].
  66. [66]
    A. Cervera et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001) 731] [hep-ph/0002108] [INSPIRE].
  67. [67]
    M. Freund, Analytic approximations for three neutrino oscillation parameters and probabilities in matter, Phys. Rev. D 64 (2001) 053003 [hep-ph/0103300] [INSPIRE].ADSGoogle Scholar
  68. [68]
    E.K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson and T. Schwetz, Series expansions for three flavor neutrino oscillation probabilities in matter, JHEP 04 (2004) 078 [hep-ph/0402175] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    H. Minakata and H. Nunokawa, Exploring neutrino mixing with low-energy superbeams, JHEP 10 (2001) 001 [hep-ph/0108085] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    S.K. Raut, R.S. Singh and S.U. Sankar, Magical properties of 2540 km baseline Superbeam Experiment, Phys. Lett. B 696 (2011) 227 [arXiv:0908.3741] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Joglekar, S. Prakash, S.K. Raut and S.U. Sankar, Physics Potential of a 2540 km Baseline Superbeam Experiment, Mod. Phys. Lett. A 26 (2011) 2051 [arXiv:1011.1146] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A. Dighe, S. Goswami and S. Ray, 2540 km: Bimagic baseline for neutrino oscillation parameters, Phys. Rev. Lett. 105 (2010) 261802 [arXiv:1009.1093] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S.K. Agarwalla, S. Prakash and S.U. Sankar, Exploring the three flavor effects with future superbeams using liquid argon detectors, arXiv:1304.3251 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Monojit Ghosh
    • 1
  • Pomita Ghoshal
    • 1
  • Srubabati Goswami
    • 1
  • Sushant K. Raut
    • 1
    Email author
  1. 1.Physical Research LaboratoryAhmedabadIndia

Personalised recommendations