Exploring the three flavor effects with future superbeams using liquid argon detectors

  • Sanjib Kumar AgarwallaEmail author
  • Suprabh Prakash
  • S. Uma Sankar
Open Access


Recent measurement of a moderately large value of θ 13 signifies an important breakthrough in establishing the standard three flavor oscillation picture of neutrinos. It has provided an opportunity to explore the sub-dominant three flavor effects in present and future long-baseline experiments. In this paper, we perform a comparative study of the physics reach of two future superbeam facilities, LBNE and LBNO in their first phases of run, to resolve the issues of neutrino mass hierarchy, octant of θ 23, and leptonic CP violation. We also find that the sensitivity of these future facilities can be improved significantly by adding the projected data from T2K and NOνA. Stand-alone LBNO setup with a 10 kt detector has a mass hierarchy discovery reach of more than 7σ, for the lowest allowed value of sin2 θ 23(true) = 0.34. This result is valid for any choice of true δ CP and hierarchy. LBNE10, in combination with T2K and NOνA, can achieve 3σ hierarchy discrimination for any choice of δ CP, sin2 θ 23, and hierarchy. The same combination can provide a 3σ octant resolution for sin2 θ 23(true) ≤ 0.44 or for sin2 θ 23(true) ≥ 0.58 for all values of δ CP(true). LBNO can give similar results with 10 kt detector mass. In their first phases, both LBNE10 and LBNO with 20 kt detector can establish leptonic CP violation for around 50% values of true δ CP at 2σ confidence level. In case of LBNE10, CP coverage at 3σ can be enhanced from 3% to 43% by combining T2K and NOνA data, assuming sin2 θ 23(true) = 0.5. For LBNO setup, CP violation discovery at 3σ is possible for 46% values of true δ CP if we add the data from T2K and NOνA.


Neutrino Physics CP violation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Daya Bay collaboration, F.P. An et al., Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay, Phys. Rev. Lett. 112 (2014) 061801 [arXiv:1310.6732] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    DAYA-BAY collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    RENO collaboration, J.K. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].ADSGoogle Scholar
  5. [5]
    R. Nichol, New Results from MINOS, Nucl. Phys. B Proc. Suppl. 235 (2013) 105.ADSCrossRefGoogle Scholar
  6. [6]
    MINOS collaboration, P. Adamson et al., Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    KATRIN collaboration, A. Osipowicz et al., KATRIN: a Next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of intent, hep-ex/0109033 [INSPIRE].
  8. [8]
    I. Avignone, Frank T., S.R. Elliott and J. Engel, Double Beta Decay, Majorana Neutrinos and Neutrino Mass, Rev. Mod. Phys. 80 (2008) 481 [arXiv:0708.1033] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Lesgourgues and S. Pastor, Neutrino mass from Cosmology, Adv. High Energy Phys. 2012 (2012) 608515 [arXiv:1212.6154] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].
  11. [11]
    NuFIT webpage,
  12. [12]
    M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino et al., Status of three-neutrino oscillation parameters, circa 2013, arXiv:1312.2878 [INSPIRE].
  14. [14]
    G.L. Fogli and E. Lisi, Tests of three flavor mixing in long baseline neutrino oscillation experiments, Phys. Rev. D 54 (1996) 3667 [hep-ph/9604415] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C.H. Albright and M.-C. Chen, Model Predictions for Neutrino Oscillation Parameters, Phys. Rev. D 74 (2006) 113006 [hep-ph/0608137] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Pascoli, S.T. Petcov and T. Schwetz, The Absolute neutrino mass scale, neutrino mass spectrum, Majorana CP-violation and neutrinoless double-beta decay, Nucl. Phys. B 734 (2006) 24 [hep-ph/0505226] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R.N. Mohapatra and S. Nussinov, Bimaximal neutrino mixing and neutrino mass matrix, Phys. Rev. D 60 (1999) 013002 [hep-ph/9809415] [INSPIRE].ADSGoogle Scholar
  19. [19]
    K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    H. Minakata and A.Y. Smirnov, Neutrino mixing and quark-lepton complementarity, Phys. Rev. D 70 (2004) 073009 [hep-ph/0405088] [INSPIRE].ADSGoogle Scholar
  21. [21]
    L.J. Hall, H. Murayama and N. Weiner, Neutrino mass anarchy, Phys. Rev. Lett. 84 (2000) 2572 [hep-ph/9911341] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. de Gouvêa and H. Murayama, Neutrino Mixing Anarchy: alive and Kicking, arXiv:1204.1249 [INSPIRE].
  23. [23]
    T2K collaboration, Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019 [INSPIRE].
  24. [24]
    T2K collaboration, K. Abe et al., The T2K Experiment, Nucl. Instrum. Meth. A 659 (2011) 106 [arXiv:1106.1238] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D. Ayres, G. Drake, M. Goodman, V. Guarino, T. Joffe-Minor et al., Letter of Intent to build an Off-axis Detector to study numu to nue oscillations with the NuMI Neutrino Beam, hep-ex/0210005 [INSPIRE].
  26. [26]
    NOvA collaboration, D.S. Ayres et al., NOvA: proposal to build a 30 kiloton off-axis detector to study ν μν e oscillations in the NuMI beamline, hep-ex/0503053 [INSPIRE].
  27. [27]
    NOvA collaboration, D. Ayres et al., The NOvA Technical Design Report, FERMILAB-DESIGN-2007-01.Google Scholar
  28. [28]
    P. Huber, M. Lindner, T. Schwetz and W. Winter, First hint for CP-violation in neutrino oscillations from upcoming superbeam and reactor experiments, JHEP 11 (2009) 044 [arXiv:0907.1896] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S.K. Agarwalla, S. Prakash, S.K. Raut and S.U. Sankar, Potential of optimized NOvA for large θ 13 & combined performance with a LArTPC & T2K, JHEP 12 (2012) 075 [arXiv:1208.3644] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S.K. Agarwalla, S. Prakash and S.U. Sankar, Resolving the octant of θ 23 with T2K and NOvA, JHEP 07 (2013) 131 [arXiv:1301.2574] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Chatterjee, P. Ghoshal, S. Goswami and S.K. Raut, Octant sensitivity for large θ 13 in atmospheric and long baseline neutrino experiments, JHEP 06 (2013) 010 [arXiv:1302.1370] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M.V. Diwan, D. Beavis, M.-C. Chen, J. Gallardo, S. Kahn et al., Very long baseline neutrino oscillation experiments for precise measurements of mixing parameters and CP-violating effects, Phys. Rev. D 68 (2003) 012002 [hep-ph/0303081] [INSPIRE].ADSGoogle Scholar
  33. [33]
    V. Barger, M. Bishai, D. Bogert, C. Bromberg, A. Curioni et al., Report of the US long baseline neutrino experiment study, arXiv:0705.4396 [INSPIRE].
  34. [34]
    P. Huber and J. Kopp, Two experiments for the price of one?The role of the second oscillation maximum in long baseline neutrino experiments, JHEP 03 (2011) 013 [Erratum ibid. 1105 (2011) 024] [arXiv:1010.3706] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    LBNE collaboration, T. Akiri et al., The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups, arXiv:1110.6249 [INSPIRE].
  36. [36]
    LBNE collaboration, C. Adams et al., Scientific Opportunities with the Long-Baseline Neutrino Experiment, arXiv:1307.7335 [INSPIRE].
  37. [37]
    D. Autiero, J. Aysto, A. Badertscher, L.B. Bezrukov, J. Bouchez et al., Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects, JCAP 11 (2007) 011 [arXiv:0705.0116] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Rubbia, A CERN-Based High-Intensity High-Energy Proton Source for Long baseline Neutrino Oscillation Experiments with Next-Generation Large Underground detectors for Proton Decay Searches and Neutrino Physics and Astrophysics, arXiv:1003.1921 [INSPIRE].
  39. [39]
    LAGUNA collaboration, D. Angus et al., The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches, arXiv:1001.0077 [INSPIRE].
  40. [40]
    LAGUNA collaboration, A. Rubbia, The LAGUNA design study: towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches, Acta Phys. Polon. B 41 (2010) 1727 [INSPIRE].Google Scholar
  41. [41]
    A. Stahl, C. Wiebusch, A. Guler, M. Kamiscioglu, R. Sever et al., Expression of Interest for a very long baseline neutrino oscillation experiment (LBNO), CERN-SPSC-2012-021.
  42. [42]
    L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].ADSGoogle Scholar
  43. [43]
    S.P. Mikheev and A.Y. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [Yad. Fiz. 42 (1985) 1441] [INSPIRE].Google Scholar
  44. [44]
    V.D. Barger, K. Whisnant, S. Pakvasa and R.J.N. Phillips, Matter Effects on Three-Neutrino Oscillations, Phys. Rev. D 22 (1980) 2718 [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Cervera, A. Donini, M.B. Gavela, J.J. Gomez Cadenas, P. Hernández et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001) 731] [hep-ph/0002108] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Freund, P. Huber and M. Lindner, Systematic exploration of the neutrino factory parameter space including errors and correlations, Nucl. Phys. B 615 (2001) 331 [hep-ph/0105071] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E.K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson and T. Schwetz, Series expansions for three flavor neutrino oscillation probabilities in matter, JHEP 04 (2004) 078 [hep-ph/0402175] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    H. Minakata and H. Nunokawa, Exploring neutrino mixing with low-energy superbeams, JHEP 10 (2001) 001 [hep-ph/0108085] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    V. Barger, D. Marfatia and K. Whisnant, Breaking eight fold degeneracies in neutrino CP-violation, mixing and mass hierarchy, Phys. Rev. D 65 (2002) 073023 [hep-ph/0112119] [INSPIRE].ADSGoogle Scholar
  50. [50]
    A. Para and M. Szleper, Neutrino oscillations experiments using off-axis NuMI beam, hep-ex/0110032 [INSPIRE].
  51. [51]
    T2K collaboration, K. McFarland et al., Oscillation Results from T2K, talk given at Fermilab Joint Experimental-Theoretical Semiar, August 23, 2013, Fermilab, U.S.A.,
  52. [52]
    M. Fechner, Détermination des performances attendues sur la recherche de loscillation ν μν e dans lexpérience T2K depuis létude des données recueillies dans lexpérience K2K, DAPNIA-2006-01-T.Google Scholar
  53. [53]
    NOvA collaboration, R.B. Patterson, The NOvA Experiment: status and Outlook, Nucl. Phys. Proc. Suppl. 235 (2013) 151 [arXiv:1209.0716] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    Mary Bishai, private communication, 2012.Google Scholar
  55. [55]
    S.K. Agarwalla, T. Li and A. Rubbia, An Incremental approach to unravel the neutrino mass hierarchy and CP-violation with a long-baseline Superbeam for large θ 13, JHEP 05 (2012) 154 [arXiv:1109.6526] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Geralyn Zeller, private communication, 2012.Google Scholar
  57. [57]
    R. Petti and G. Zeller, Nuclear Effects in Water vs. Argon, Tech. Rep. LBNE docdb, no. 740.Google Scholar
  58. [58]
    Silvestro di Luise, Optimization of Neutrino Fluxes for Future Long Baseline Neutrino Experiment, poster presented at the ICHEP2012 Conference, July 4-11 2012, Melbourne, Australia,
  59. [59]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: general Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Another possible way to determine the neutrino mass hierarchy, Phys. Rev. D 72 (2005) 013009 [hep-ph/0503283] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A. de Gouvêa, J. Jenkins and B. Kayser, Neutrino mass hierarchy, vacuum oscillations and vanishing |U(e3)|, Phys. Rev. D 71 (2005) 113009 [hep-ph/0503079] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M. Blennow, P. Coloma, A. Donini and E. Fernandez-Martinez, Gain fractions of future neutrino oscillation facilities over T2K and NOvA, JHEP 07 (2013) 159 [arXiv:1303.0003] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    Daya Bay collaboration, X. Qian et al., Improved Measurement of Electron-antineutrino Disappearance at Daya Bay, talk given at the NuFact 2012 Conference, July 23-28 2012, Williamsburg, U.S.A.,
  65. [65]
    MINERvA collaboration, L. Aliaga et al., Design, Calibration and Performance of the MINERvA Detector, Nucl. Instrum. Meth. A 743 (2014) 130 [arXiv:1305.5199] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    P. Coloma, P. Huber, J. Kopp and W. Winter, Systematic uncertainties in long-baseline neutrino oscillations for large θ 13, Phys. Rev. D 87 (2013) 033004 [arXiv:1209.5973] [INSPIRE].ADSGoogle Scholar
  67. [67]
    M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, arXiv:1311.1822 [INSPIRE].
  68. [68]
    S.K. Raut, R.S. Singh and S.U. Sankar, Magical properties of 2540 KM baseline Superbeam Experiment, Phys. Lett. B 696 (2011) 227 [arXiv:0908.3741] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Dighe, S. Goswami and S. Ray, 2540 KM: bimagic baseline for neutrino oscillation parameters, Phys. Rev. Lett. 105 (2010) 261802 [arXiv:1009.1093] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    S.K. Agarwalla, P. Huber, J. Tang and W. Winter, Optimization of the Neutrino Factory, revisited, JHEP 01 (2011) 120 [arXiv:1012.1872] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S. Prakash, S.K. Raut and S.U. Sankar, Getting the Best Out of T2K and NOvA, Phys. Rev. D 86 (2012) 033012 [arXiv:1201.6485] [INSPIRE].ADSGoogle Scholar
  72. [72]
    K. Dick, M. Freund, M. Lindner and A. Romanino, CP violation in neutrino oscillations, Nucl. Phys. B 562 (1999) 29 [hep-ph/9903308] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A. Donini, M.B. Gavela, P. Hernández and S. Rigolin, Neutrino mixing and CP-violation, Nucl. Phys. B 574 (2000) 23 [hep-ph/9909254] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Sanjib Kumar Agarwalla
    • 1
    Email author
  • Suprabh Prakash
    • 2
  • S. Uma Sankar
    • 2
  1. 1.Institute of Physics, Sachivalaya Marg, Sainik School PostBhubaneswarIndia
  2. 2.Department of PhysicsIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations