Advertisement

Black holes as bubble nucleation sites

  • Ruth Gregory
  • Ian G. Moss
  • Benjamin Withers
Open Access
Article

Abstract

We consider the effect of inhomogeneities on the rate of false vacuum decay. Modelling the inhomogeneity by a black hole, we construct explicit Euclidean instantons which describe the nucleation of a bubble of true vacuum centred on the inhomogeneity. We find that inhomogeneity significantly enhances the nucleation rate over that of the Coleman-de Luccia instanton — the black hole acts as a nucleation site for the bubble. The effect is larger than previously believed due to the contributions to the action from conical singularities. For a sufficiently low initial mass, the original black hole is replaced by flat space during this process, as viewed by a single causal patch observer. Increasing the initial mass, we find a critical value above which a black hole remnant survives the process. This resulting black hole can have a higher mass than the original black hole, but always has a lower entropy. We compare the process to bubble-to-bubble transitions, where there is a semi-classical Lorentzian description in the WKB approximation.

Keywords

Cosmology of Theories beyond the SM Black Holes Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  2. [2]
    C.G. Callan Jr. and S.R. Coleman, The Fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].ADSGoogle Scholar
  3. [3]
    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSGoogle Scholar
  4. [4]
    M.S. Turner and F. Wilczek, Might our vacuum be metastable?, Nature 298 (1982) 633 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    W.A. Hiscock, Can black holes nucleate vacuum phase transitions?, Phys. Rev. D 35 (1987) 1161 [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    V.A. Berezin, V.A. Kuzmin and I.I. Tkachev, O(3) Invariant Tunneling in General Relativity, Phys. Lett. B 207 (1988) 397 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    V.A. Berezin, V.A. Kuzmin and I.I. Tkachev, Black holes initiate false vacuum decay, Phys. Rev. D 43 (1991) 3112 [INSPIRE].ADSGoogle Scholar
  8. [8]
    I.G. Moss, Black hole bubbles, Phys. Rev. D 32 (1985) 1333 [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    C. Cheung and S. Leichenauer, Limits on New Physics from Black Holes, arXiv:1309.0530 [INSPIRE].
  10. [10]
    S.R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].ADSGoogle Scholar
  11. [11]
    H. Nariai, On some static solutions of Einsteins gravitational field equations in a spherically symmetric case, Sci. Rept. Tohoku Univ. 34 (1950) 160.ADSMathSciNetGoogle Scholar
  12. [12]
    H. Nariai, On a new cosmological solution of Einsteins field equations of gravitation, Sci. Rept. Tohoku Univ. 35 (1951) 46.MathSciNetGoogle Scholar
  13. [13]
    S.W. Hawking and N. Turok, Open inflation without false vacua, Phys. Lett. B 425 (1998) 25 [hep-th/9802030] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    N. Turok and S.W. Hawking, Open inflation, the four form and the cosmological constant, Phys. Lett. B 432 (1998) 271 [hep-th/9803156] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    G.W. Gibbons and S.W. Hawking, Classification of Gravitational Instanton Symmetries, Commun. Math. Phys. 66 (1979) 291 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    J. Garriga and A. Megevand, Decay of de Sitter vacua by thermal activation, Int. J. Theor. Phys. 43 (2004) 883 [hep-th/0404097] [INSPIRE].CrossRefzbMATHGoogle Scholar
  17. [17]
    E. Farhi, A.H. Guth and J. Guven, Is It Possible to Create a Universe in the Laboratory by Quantum Tunneling?, Nucl. Phys. B 339 (1990) 417 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    W. Fischler, D. Morgan and J. Polchinski, Quantum Nucleation of False Vacuum Bubbles, Phys. Rev. D 41 (1990) 2638 [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    W. Fischler, D. Morgan and J. Polchinski, Quantization of False Vacuum Bubbles: A Hamiltonian Treatment of Gravitational Tunneling, Phys. Rev. D 42 (1990) 4042 [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    A. Aguirre and M.C. Johnson, Dynamics and instability of false vacuum bubbles, Phys. Rev. D 72 (2005) 103525 [gr-qc/0508093] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Aguirre and M.C. Johnson, Two tunnels to inflation, Phys. Rev. D 73 (2006) 123529 [gr-qc/0512034] [INSPIRE].ADSGoogle Scholar
  22. [22]
    W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cimento Soc. Ital. Phys. B 44 (1966) 4349.Google Scholar
  23. [23]
    P. Bowcock, C. Charmousis and R. Gregory, General brane cosmologies and their global space-time structure, Class. Quant. Grav. 17 (2000) 4745 [hep-th/0007177] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    F. Mellor and I. Moss, Black Holes and Quantum Wormholes, Phys. Lett. B 222 (1989) 361 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    F. Mellor and I. Moss, Black Holes and Gravitational Instantons, Class. Quant. Grav. 6 (1989) 1379 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    F. Dowker, J.P. Gauntlett, D.A. Kastor and J.H. Traschen, Pair creation of dilaton black holes, Phys. Rev. D 49 (1994) 2909 [hep-th/9309075] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    A.R. Brown and E.J. Weinberg, Thermal derivation of the Coleman-De Luccia tunneling prescription, Phys. Rev. D 76 (2007) 064003 [arXiv:0706.1573] [INSPIRE].ADSGoogle Scholar
  28. [28]
    R.P. Geroch and J.H. Traschen, Strings and Other Distributional Sources in General Relativity, Phys. Rev. D 36 (1987) 1017 [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    S.W. Hawking and G.T. Horowitz, The Gravitational Hamiltonian, action, entropy and surface terms, Class. Quant. Grav. 13 (1996) 1487 [gr-qc/9501014] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    D.V. Fursaev and S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects, Phys. Rev. D 52 (1995) 2133 [hep-th/9501127] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    D.N. Page, Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].ADSGoogle Scholar
  32. [32]
    C. Charmousis and R. Gregory, Axisymmetric metrics in arbitrary dimensions, Class. Quant. Grav. 21 (2004) 527 [gr-qc/0306069] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    C. Charmousis, Dilaton space-times with a Liouville potential, Class. Quant. Grav. 19 (2002) 83 [hep-th/0107126] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    S. Chadburn and R. Gregory, Time dependent black holes and scalar hair, arXiv:1304.6287 [INSPIRE].
  35. [35]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  37. [37]
    P. Kanti, Black holes in theories with large extra dimensions: A Review, Int. J. Mod. Phys. A 19 (2004) 4899 [hep-ph/0402168] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    R. Gregory and A. Padilla, Brane world instantons, Class. Quant. Grav. 19 (2002) 279 [hep-th/0107108] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    R. Gregory, Braneworld black holes, Lect. Notes Phys. 769 (2009) 259 [arXiv:0804.2595] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    P. Figueras and T. Wiseman, Gravity and large black holes in Randall-Sundrum II braneworlds, Phys. Rev. Lett. 107 (2011) 081101 [arXiv:1105.2558] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    A. Westphal, Lifetime of Stringy de Sitter Vacua, JHEP 01 (2008) 012 [arXiv:0705.1557] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    S. de Alwis, R. Gupta, E. Hatefi and F. Quevedo, Stability, Tunneling and Flux Changing de Sitter Transitions in the Large Volume String Scenario, JHEP 11 (2013) 179 [arXiv:1308.1222] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Ruth Gregory
    • 1
    • 2
  • Ian G. Moss
    • 3
  • Benjamin Withers
    • 1
    • 4
  1. 1.Department of Mathematical Sciences and Centre for Particle TheoryDurhamU.K.
  2. 2.Perimeter InstituteWaterlooCanada
  3. 3.School of Mathematics and StatisticsNewcastle UniversityNewcastle Upon TyneU.K.
  4. 4.Mathematical Sciences and STAG research centreUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations