Advertisement

Fermionic UV completions of composite Higgs models

  • Gabriele Ferretti
  • Denis Karateev
Open Access
Article

Abstract

We classify the four-dimensional purely fermionic gauge theories that give a UV completion of composite Higgs models. Our analysis is at the group theoretical level, addressing the necessary (but not sufficient) conditions for the viability of these models, such as the existence of top partners and custodial symmetry. The minimal cosets arising are those of type SU(5)/SO(5) and SU(4)/Sp(4). We list all the possible “hyper-color” groups allowed and point out the simplest and most promising ones.

Keywords

Beyond Standard Model Technicolor and Composite Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D.B. Kaplan, Flavor at SSC energies: A new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, arXiv:1005.4269 [INSPIRE].
  9. [9]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Caracciolo, A. Parolini and M. Serone, UV Completions of Composite Higgs Models with Partial Compositeness, JHEP 02 (2013) 066 [arXiv:1211.7290] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without elementary scalars, arXiv:1311.6562 [INSPIRE].
  13. [13]
    G. Ferretti, On the UV completion of models of partial compositeness, Solvay Workshop on Exploring Higher Energy Physics, Brussels, 4 - 6 November 2013.Google Scholar
  14. [14]
    J. Preskill and S. Weinberg, ‘Decouplingconstraints on massless composite particles, Phys. Rev. D 24 (1981) 1059 [INSPIRE].ADSGoogle Scholar
  15. [15]
    C. Vafa and E. Witten, Restrictions on Symmetry Breaking in Vector-Like Gauge Theories, Nucl. Phys. B 234 (1984) 173 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    S. Raby, S. Dimopoulos and L. Susskind, Tumbling Gauge Theories, Nucl. Phys. B 169 (1980) 373 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    R. Feger and T.W. Kephart, LieART - A Mathematica Application for Lie Algebras and Representation Theory, arXiv:1206.6379 [INSPIRE].
  19. [19]
    M.A.A. van Leeuwen, A.M. Cohen and B. Lisser, LiE, A Package for Lie Group Computations, Computer Algebra Nederland, Amsterdam, ISBN 90-74116-02-7, (1992).Google Scholar
  20. [20]
    B. Gripaios, Composite Leptoquarks at the LHC, JHEP 02 (2010) 045 [arXiv:0910.1789] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Frigerio, J. Serra and A. Varagnolo, Composite GUTs: models and expectations at the LHC, JHEP 06 (2011) 029 [arXiv:1103.2997] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L. Vecchi, The Natural Composite Higgs, arXiv:1304.4579 [INSPIRE].
  24. [24]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Appelquist, P.S. Rodrigues da Silva and F. Sannino, Enhanced global symmetries and the chiral phase transition, Phys. Rev. D 60 (1999) 116007 [hep-ph/9906555] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T.A. Ryttov and F. Sannino, Ultra Minimal Technicolor and its Dark Matter TIMP, Phys. Rev. D 78 (2008) 115010 [arXiv:0809.0713] [INSPIRE].ADSGoogle Scholar
  27. [27]
    CMS collaboration, Search for top-quark partners with charge 5/3 in the same-sign dilepton final state, arXiv:1312.2391 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Fundamental PhysicsChalmers University of TechnologyGöteborgSweden
  2. 2.SISSATriesteItaly

Personalised recommendations