Heavy superpartners with less tuning from hidden sector renormalisation

  • Edward HardyEmail author
Open Access


In supersymmetric extensions of the Standard Model, superpartner masses consistent with collider bounds typically introduce significant tuning of the electroweak scale. We show that hidden sector renormalisation can greatly reduce such a tuning if the supersymmetry breaking, or mediating, sector runs through a region of strong coupling not far from the weak scale. In the simplest models, only the tuning due to the gaugino masses is improved, and a weak scale gluino mass in the region of 5 TeV may be obtained with an associated tuning of only one part in ten. In models with more complex couplings between the visible and hidden sectors, the tuning with respect to sfermions can also be reduced. We give an example of a model, with low scale gauge mediation and superpartner masses allowed by current LHC bounds, that has an overall tuning of one part in twenty.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A.E. Nelson and M.J. Strassler, Suppressing flavor anarchy, JHEP 09 (2000) 030 [hep-ph/0006251] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Dine et al., Visible effects of the hidden sector, Phys. Rev. D 70 (2004) 045023 [hep-ph/0405159] [INSPIRE].ADSGoogle Scholar
  3. [3]
    A.G. Cohen, T.S. Roy and M. Schmaltz, Hidden sector renormalization of MSSM scalar masses, JHEP 02 (2007) 027 [hep-ph/0612100] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    H. Murayama, Y. Nomura and D. Poland, More visible effects of the hidden sector, Phys. Rev. D 77 (2008) 015005 [arXiv:0709.0775] [INSPIRE].ADSGoogle Scholar
  5. [5]
    H. Abe, T. Kobayashi and Y. Omura, Metastable supersymmetry breaking vacua from conformal dynamics, Phys. Rev. D 77 (2008) 065001 [arXiv:0712.2519] [INSPIRE].ADSGoogle Scholar
  6. [6]
    H.Y. Cho, Constraints of the B(μ)/μ solution due to the hidden sector renormalization, JHEP 07 (2008) 069 [arXiv:0802.1145] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Y. Kawamura, T. Kinami and T. Miura, Superparticle sum rules in the presence of hidden sector dynamics, JHEP 01 (2009) 064 [arXiv:0810.3965] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    B.A. Campbell, J. Ellis and D.W. Maybury, Observing the hidden sector, arXiv:0810.4877 [INSPIRE].
  9. [9]
    G. Perez, T.S. Roy and M. Schmaltz, Phenomenology of SUSY with scalar sequestering, Phys. Rev. D 79 (2009) 095016 [arXiv:0811.3206] [INSPIRE].ADSGoogle Scholar
  10. [10]
    N.J. Craig and D. Green, On the phenomenology of strongly coupled hidden sectors, JHEP 09 (2009) 113 [arXiv:0905.4088] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Arai, S. Kawai and N. Okada, A Gauge mediation scenario with hidden sector renormalization in MSSM, Phys. Rev. D 81 (2010) 035022 [arXiv:1001.1509] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Arai, S. Kawai and N. Okada, Renormalization effects on the MSSM from a calculable model of a strongly coupled hidden sector, Phys. Rev. D 84 (2011) 075002 [arXiv:1011.3998] [INSPIRE].ADSGoogle Scholar
  13. [13]
    H. Terao, Renormalization group for soft SUSY breaking parameters and MSSM coupled with superconformal field theories, hep-ph/0112021 [INSPIRE].
  14. [14]
    T. Kobayashi and H. Terao, Suppressed supersymmetry breaking terms in the Higgs sector, JHEP 07 (2004) 026 [hep-ph/0403298] [INSPIRE].Google Scholar
  15. [15]
    H. Terao, Higgs and top quark coupled with a conformal gauge sector, arXiv:0705.0443 [INSPIRE].
  16. [16]
    T. Cohen, A. Hook and G. Torroba, An attractor for natural supersymmetry, Phys. Rev. D 86 (2012) 115005 [arXiv:1204.1337] [INSPIRE].ADSGoogle Scholar
  17. [17]
    E. Hardy, Is natural SUSY natural?, JHEP 10 (2013) 133 [arXiv:1306.1534] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Arvanitaki, M. Baryakhtar, X. Huang, K. van Tilburg and G. Villadoro, The last vestiges of naturalness, JHEP 03 (2014) 022 [arXiv:1309.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    K. Higashijima and E. Itou, Unitarity bound of the wave function renormalization constant, Prog. Theor. Phys. 110 (2003) 107 [hep-th/0304047] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    H. Baer, V. Barger and M. Padeffke-Kirkland, Electroweak versus high scale finetuning in the 19 parameter SUGRA model, Phys. Rev. D 88 (2013) 055026 [arXiv:1304.6732] [INSPIRE].ADSGoogle Scholar
  23. [23]
    H. Baer, V. Barger and D. Mickelson, How conventional measures overestimate electroweak fine-tuning in supersymmetric theory, Phys. Rev. D 88 (2013) 095013 [arXiv:1309.2984] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    H. Baer et al., Radiative natural supersymmetry: reconciling electroweak fine-tuning and the Higgs boson mass, Phys. Rev. D 87 (2013) 115028 [arXiv:1212.2655] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Kaminska, G.G. Ross and K. Schmidt-Hoberg, Non-universal gaugino masses and fine tuning implications for SUSY searches in the MSSM and the GNMSSM, JHEP 11 (2013) 209 [arXiv:1308.4168] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Sannino and K. Tuominen, Orientifold theory dynamics and symmetry breaking, Phys. Rev. D 71 (2005) 051901 [hep-ph/0405209] [INSPIRE].ADSGoogle Scholar
  32. [32]
    D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: Predictions for CERN LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [INSPIRE].ADSGoogle Scholar
  33. [33]
    D. Poland and D. Simmons-Duffin, N =1 SQCD and the transverse field Ising model, JHEP 02 (2012) 009 [arXiv:1104.1425] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    A.E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl. Phys. B 416 (1994) 46 [hep-ph/9309299] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    S.A. Abel, J. Jaeckel and V.V. Khoze, Gaugino versus sfermion masses in gauge mediation, Phys. Lett. B 682 (2010) 441 [arXiv:0907.0658] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    T. Kikuchi, A solution to the little hierarchy problem in a partly N = 2 extension of the MSSM, arXiv:0812.2569 [INSPIRE].
  39. [39]
    L.M. Carpenter, Dirac gauginos, negative supertraces and gauge mediation, JHEP 09 (2012) 102 [arXiv:1007.0017] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K. Benakli, Dirac gauginos: a user manual, Fortsch. Phys. 59 (2011) 1079 [arXiv:1106.1649] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G.D. Kribs and A. Martin, Supersoft supersymmetry is super-safe, Phys. Rev. D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A.E. Nelson and M.J. Strassler, Exact results for supersymmetric renormalization and the supersymmetric flavor problem, JHEP 07 (2002) 021 [hep-ph/0104051] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K

Personalised recommendations