Advertisement

Extremal surface barriers

  • Netta Engelhardt
  • Aron C. Wall
Open Access
Article

Abstract

We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Classical Theories of Gravity Spacetime Singularities 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, Phys. Rev. Lett. 111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K. Papadodimas and S. Raju, State-dependent bulk-boundary maps and black hole complementarity, arXiv:1310.6335 [INSPIRE].
  6. [6]
    S.B. Giddings, Black holes, quantum information and unitary evolution, Phys. Rev. D 85 (2012) 124063 [arXiv:1201.1037] [INSPIRE].ADSGoogle Scholar
  7. [7]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    R. Bousso, Complementarity is not enough, Phys. Rev. D 87 (2013) 124023 [arXiv:1207.5192] [INSPIRE].ADSGoogle Scholar
  9. [9]
    K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S.G. Avery, B.D. Chowdhury and A. Puhm, Unitarity and fuzzball complementarity:Alice fuzzes but may not even know it!’, JHEP 09 (2013) 012 [arXiv:1210.6996] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    S.S. Pal, Extremal surfaces and entanglement entropy, arXiv:1312.0088 [INSPIRE].
  17. [17]
    L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    J. Maldacena and G.L. Pimentel, Entanglement entropy in de Sitter space, JHEP 02 (2013) 038 [arXiv:1210.7244] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    N. Engelhardt and G.T. Horowitz, Entanglement entropy near cosmological singularities, JHEP 06 (2013) 041 [arXiv:1303.4442] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    W. Fischler, S. Kundu, and J.F. Pedraza, Entanglement and out-of-equilibrium dynamics in holographic models of de Sitter QFTs, arXiv:1311.5519.
  22. [22]
    H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, arXiv:1311.1200 [INSPIRE].
  23. [23]
    W.W. Meeks III, and S.T. Yau, The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z. 179 (1982) 151.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    R. Schoen and L. Simon, Regularity of stable minimal hypersurfaces, Comm. Pure. Appl. Math. 34 (1981) 741.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    E. Spadaro, Mean-convex sets and minimal barriers, arXiv:1112.4288.
  26. [26]
    A.C. Wall, The generalized second law implies a quantum singularity theorem, Class. Quant. Grav. 30 (2013) 165003 [Erratum ibid. 30 (2013) 199501] [arXiv:1010.5513] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S.W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26 (1971) 1344 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    D. Marolf and A.C. Wall, Eternal black holes and superselection in AdS/CFT, Class. Quant. Grav. 30 (2013) 025001 [arXiv:1210.3590] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    T. Hertog and G.T. Horowitz, Towards a big crunch dual, JHEP 07 (2004) 073 [hep-th/0406134] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    N. Engelhardt, T. Hertog and G. Horowitz, work in progress.Google Scholar
  32. [32]
    M. Mars, Stability of MOTS in totally geodesic null horizons, Class. Quant. Grav. 29 (2012) 145019 [arXiv:1205.1724] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    P. Háj́ic̃ek, Exact models of charged black holes. I. Geometry of totally geodesic null hypersurface, Commun. Math. Phys. 34 (1973) 37.ADSCrossRefGoogle Scholar
  34. [34]
    S.W. Hawking and G.F.R. Ellis, The large scale structure of spacetime, Cambridge University Press, Cambridge U.K. (1973).CrossRefGoogle Scholar
  35. [35]
    M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, arXiv:1211.3494 [INSPIRE].
  37. [37]
    V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev. D 86 (2012) 046009 [arXiv:1203.6619] [INSPIRE].ADSGoogle Scholar
  39. [39]
    J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A

Personalised recommendations