Gravitation from entanglement in holographic CFTs

  • Thomas Faulkner
  • Monica Guica
  • Thomas Hartman
  • Robert C. Myers
  • Mark Van Raamsdonk
Open Access
Article

Abstract

Entanglement entropy obeys a ‘first law’, an exact quantum generalization of the ordinary first law of thermodynamics. In any CFT with a semiclassical holographic dual, this first law has an interpretation in the dual gravitational theory as a constraint on the spacetimes dual to CFT states. For small perturbations around the CFT vacuum state, we show that the set of such constraints for all ball-shaped spatial regions in the CFT is exactly equivalent to the requirement that the dual geometry satisfy the gravitational equations of motion, linearized about pure AdS. For theories with entanglement entropy computed by the Ryu-Takayanagi formula S = \( \mathcal{A} \)/(4GN), we obtain the linearized Einstein equations. For theories in which the vacuum entanglement entropy for a ball is computed by more general Wald functionals, we obtain the linearized equations for the associated higher-curvature theories. Using the first law, we also derive the holographic dictionary for the stress tensor, given the holographic formula for entanglement entropy. This method provides a simple alternative to holographic renormalization for computing the stress tensor expectation value in arbitrary higher derivative gravitational theories.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence 

References

  1. [1]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetGoogle Scholar
  4. [4]
    T. Takayanagi, Entanglement entropy from a holographic viewpoint, Class. Quant. Grav. 29 (2012) 153001 [arXiv:1204.2450] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].
  6. [6]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].ADSGoogle Scholar
  8. [8]
    B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
  9. [9]
    E. Bianchi and R.C. Myers, On the architecture of spacetime geometry, arXiv:1212.5183 [INSPIRE].
  10. [10]
    R.C. Myers, R. Pourhasan and M. Smolkin, On spacetime entanglement, JHEP 06 (2013) 013 [arXiv:1304.2030] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, A hole-ographic spacetime, arXiv:1310.4204 [INSPIRE].
  12. [12]
    M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    H. Li and F.D.M. Haldane, Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-abelian fractional quantum Hall effect states, Phys. Rev. Lett. 101 (2008) 010504 [arXiv:0805.0332].ADSCrossRefGoogle Scholar
  15. [15]
    A.M. Turner, F. Pollmann and E. Berg, Topological phases of one-dimensional fermions: An entanglement point of view, Phys. Rev. B 83 (2011) 075102 [arXiv:1008.4346].ADSCrossRefGoogle Scholar
  16. [16]
    N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglementthermodynamics”, arXiv:1308.3716 [INSPIRE].
  17. [17]
    D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative entropy and holography, JHEP 08 (2013) 060 [arXiv:1305.3182] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical property of entanglement entropy for excited states, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Nozaki, T. Numasawa and T. Takayanagi, Holographic local quenches and entanglement density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement thermodynamics, JHEP 08 (2013) 102 [arXiv:1305.2728] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement temperature and entanglement entropy of excited states, JHEP 12 (2013) 020 [arXiv:1305.3291] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50 (1978) 221 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    V. Vedral, The role of relative entropy in quantum information theory, Rev. Mod. Phys. 74 (2002) 197 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    P.D. Hislop and R. Longo, Modular structure of the local algebras associated with the free massless scalar field theory, Commun. Math. Phys. 84 (1982) 71 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  31. [31]
    A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, arXiv:1211.3494 [INSPIRE].
  34. [34]
    X. Dong, Holographic entanglement entropy for general higher derivative gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Camps, Generalized entropy and higher derivative Gravity, arXiv:1310.6659 [INSPIRE].
  36. [36]
    A. Bhattacharyya, M. Sharma and A. Sinha, On generalized gravitational entropy, squashed cones and holography, JHEP 01 (2014) 021 [arXiv:1308.5748] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Bhattacharyya, A. Kaviraj and A. Sinha, Entanglement entropy in higher derivative holography, JHEP 08 (2013) 012 [arXiv:1305.6694] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional geometry of squashed cones, arXiv:1306.4000 [INSPIRE].
  39. [39]
    L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    K. Skenderis, Asymptotically Anti-de Sitter space-times and their stress energy tensor, Int. J. Mod. Phys. A 16 (2001) 740 [hep-th/0010138] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  44. [44]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  45. [45]
    I. Papadimitriou and K. Skenderis, AdS/CFT correspondence and geometry, hep-th/0404176 [INSPIRE].
  46. [46]
    V. Iyer and R.M. Wald, A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    R.M. Wald, General relativity, Chicago University Press, Chicago U.S.A. (1984).CrossRefMATHGoogle Scholar
  48. [48]
    J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  49. [49]
    R.M. Wald, On identically closed forms locally constructed from a field, J. Math. Phys. 31 (1990) 2378.ADSCrossRefMATHMathSciNetGoogle Scholar
  50. [50]
    I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    S. Hollands, A. Ishibashi and D. Marolf, Comparison between various notions of conserved charges in asymptotically AdS-spacetimes, Class. Quant. Grav. 22 (2005) 2881 [hep-th/0503045] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  52. [52]
    S. Hollands, A. Ishibashi and D. Marolf, Counter-term charges generate bulk symmetries, Phys. Rev. D 72 (2005) 104025 [hep-th/0503105] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds, JHEP 04 (2010) 093 [arXiv:1001.3598] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    J. Smolic and M. Taylor, Higher derivative effects for 4D AdS gravity, JHEP 06 (2013) 096 [arXiv:1301.5205] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    T. Jacobson, Gravitation and vacuum entanglement entropy, Int. J. Mod. Phys. D 21 (2012) 1242006 [arXiv:1204.6349] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    R. Guedens, T. Jacobson and S. Sarkar, Horizon entropy and higher curvature equations of state, Phys. Rev. D 85 (2012) 064017 [arXiv:1112.6215] [INSPIRE].ADSGoogle Scholar
  58. [58]
    E. Bianchi, Horizon entanglement entropy and universality of the graviton coupling, arXiv:1211.0522 [INSPIRE].
  59. [59]
    T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].MathSciNetGoogle Scholar
  60. [60]
    T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    D.A. Galante and R.C. Myers, Holographic Renyi entropies at finite coupling, JHEP 08 (2013) 063 [arXiv:1305.7191] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Kurusa, The Radon transform on hyperbolic space, Geometriae Dedicata 40 (1991) 325.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Thomas Faulkner
    • 1
  • Monica Guica
    • 2
  • Thomas Hartman
    • 3
  • Robert C. Myers
    • 4
  • Mark Van Raamsdonk
    • 5
  1. 1.Institute for Advanced StudyPrincetonU.S.A.
  2. 2.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A.
  3. 3.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  4. 4.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  5. 5.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations