LHC bounds on lepton number violation mediated by doubly and singly-charged scalars

Open Access
Article

Abstract

The only possible doubly-charged scalar decays into two Standard Model particles are into pairs of same-sign charged leptons, H±±l ± l ± , l = e, μ, τ, or gauge bosons, H±±W ± W ±; being necessary the observation of both to assert the violation of lepton number. However, present ATLAS and CMS limits on doubly-charged scalar production are obtained under specific assumptions on its branching fractions into dileptons only. Although they can be extended to include decays into dibosons and lepton number violating processes. Moreover, the production rates also depend on the type of electroweak multiplet H±± belongs to. We classify the possible alternatives and provide the Feynman rules and codes for generating the corresponding signals for pair and associated doubly-charged scalar production, including the leading contribution from the s-channel exchange of electroweak gauge bosons as well as the vector-boson fusion corrections. Then, using the same analysis criteria as the LHC collaborations we estimate the limits on the H±± mass as a function of the electroweak multiplet it belongs to, and obtain the bounds on the lepton number violating processes pp → H±±H∓∓ ± ± W W and pp → H±±H ± ± W Z, = e, μ, implied by the ATLAS and CMS doubly-charged scalar searches.

Keywords

Higgs Physics Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ATLAS collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726 (2013) 120 [arXiv:1307.1432] [INSPIRE].ADSGoogle Scholar
  3. [3]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CMS collaboration, Study of the Mass and Spin-Parity of the Higgs Boson Candidate Via Its Decays to Z Boson Pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE].
  6. [6]
    J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, arXiv:1303.6591 [INSPIRE].
  8. [8]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].ADSGoogle Scholar
  9. [9]
    LHC Higgs Cross Section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  10. [10]
    R. Barbieri and A. Strumia, TheLEP paradox’, hep-ph/0007265 [INSPIRE].
  11. [11]
    F. del Aguila and J. de Blas, Electroweak constraints on new physics, Fortsch. Phys. 59 (2011) 1036 [arXiv:1105.6103] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Gfitter Group collaboration, M. Goebel, Status of the global fit to electroweak precisions data, PoS(ICHEP 2010)570 [arXiv:1012.1331] [INSPIRE].
  13. [13]
    ALEPH, CDF, D0, DELPHI, L3, OPAL and SLD collaborations, LEP and Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:1012.2367 [INSPIRE].
  14. [14]
    M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy et al., The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. de Blas, Electroweak limits on physics beyond the Standard Model, EPJ Web Conf. 60 (2013) 19008 [arXiv:1307.6173] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  18. [18]
    R.N. Mohapatra and P.B. Pal, Massive neutrinos in physics and astrophysics, second edition, World Sci. Lect. Notes Phys. 60 (1998) 1 [third edition, World Sci. Lect. Notes Phys. 72 (2004) 1].Google Scholar
  19. [19]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    W.H. Furry, On transition probabilities in double beta-disintegration, Phys. Rev. 56 (1939) 1184 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    J.D. Vergados, The Neutrinoless double beta decay from a modern perspective, Phys. Rept. 361 (2002) 1 [hep-ph/0209347] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F.T. Avignone III, S.R. Elliott and J. Engel, Double Beta Decay, Majorana Neutrinos and Neutrino Mass, Rev. Mod. Phys. 80 (2008) 481 [arXiv:0708.1033] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A.S. Barabash, Double beta decay experiments, Phys. Part. Nucl. 42 (2011) 613 [arXiv:1107.5663] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    J. Schechter and J.W.F. Valle, Neutrinoless Double beta Decay in SU(2) × U(1) Theories, Phys. Rev. D 25 (1982) 2951 [INSPIRE].ADSGoogle Scholar
  25. [25]
    K.S. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    K.-w. Choi, K.S. Jeong and W.Y. Song, Operator analysis of neutrinoless double beta decay, Phys. Rev. D 66 (2002) 093007 [hep-ph/0207180] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Engel and P. Vogel, Effective operators for double beta decay, Phys. Rev. C 69 (2004) 034304 [nucl-th/0311072] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. de Gouvêa and J. Jenkins, A Survey of Lepton Number Violation Via Effective Operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].ADSGoogle Scholar
  29. [29]
    F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, A realistic model of neutrino masses with a large neutrinoless double beta decay rate, JHEP 05 (2012) 133 [arXiv:1111.6960] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses, JHEP 06 (2012) 146 [arXiv:1204.5986] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. del Águila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, Neutrinoless double β decay with small neutrino masses, PoS(Corfu2012)028 [arXiv:1305.4900] [INSPIRE].
  32. [32]
    M. Gustafsson, J.M. No and M.A. Rivera, The Cocktail Model: Neutrino Masses and Mixings with Dark Matter, Phys. Rev. Lett. 110 (2013) 211802 [arXiv:1212.4806] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Franceschini and R.N. Mohapatra, Radiatively Induced Type II seesaw and Vector-like 5/3 Charge Quarks, arXiv:1306.6108 [INSPIRE].
  34. [34]
    W.-Y. Keung and G. Senjanović, Majorana Neutrinos and the Production of the Right-handed Charged Gauge Boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G.C. Branco, R.G. Felipe and F.R. Joaquim, Leptonic CP-violation, Rev. Mod. Phys. 84 (2012) 515 [arXiv:1111.5332] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Hambye, Leptogenesis: beyond the minimal type-I seesaw scenario, New J. Phys. 14 (2012) 125014 [arXiv:1212.2888] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Yanagida, Horizontal Symmetry And Masses Of Neutrinos, in proceedings of Workshop on the Unified Theories and the Baryon Number in the Universe, Tsukuba, Japan, 13-14 Feb 1979 [INSPIRE].
  41. [41]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, in proceedings of Supergravity Workshop, 27-28 Sep. 1979, Stony Brook, New York, USA [arXiv:1306.4669] [INSPIRE].
  42. [42]
    S. L. Glashow, The Future Of Elementary Particle Physics, NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 687 [INSPIRE].Google Scholar
  43. [43]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) x U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  47. [47]
    G.B. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number, Phys. Lett. B 99 (1981) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  50. [50]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  51. [51]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Hektor, M. Kadastik, M. Muntel, M. Raidal and L. Rebane, Testing neutrino masses in little Higgs models via discovery of doubly charged Higgs at LHC, Nucl. Phys. B 787 (2007) 198 [arXiv:0705.1495] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    R. Franceschini, T. Hambye and A. Strumia, Type-III see-saw at LHC, Phys. Rev. D 78 (2008) 033002 [arXiv:0805.1613] [INSPIRE].ADSGoogle Scholar
  58. [58]
    F. del Aguila and J.A. Aguilar-Saavedra, Electroweak scale seesaw and heavy Dirac neutrino signals at LHC, Phys. Lett. B 672 (2009) 158 [arXiv:0809.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A. Arhrib et al., Collider Signatures for Heavy Lepton Triplet in Type I + III Seesaw, Phys. Rev. D 82 (2010) 053004 [arXiv:0904.2390] [INSPIRE].ADSGoogle Scholar
  60. [60]
    CMS collaboration, A search for a doubly-charged Higgs boson in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 72 (2012) 2189 [arXiv:1207.2666] [INSPIRE].ADSGoogle Scholar
  61. [61]
    ATLAS collaboration, Search for doubly-charged Higgs bosons in like-sign dilepton final states at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2244 [arXiv:1210.5070] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in Electroweak Precision Data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].ADSGoogle Scholar
  63. [63]
    P.S.B. Dev, A. Pilaftsis and U.-k. Yang, New Production Mechanism for Heavy Neutrinos at the LHC, arXiv:1308.2209 [INSPIRE].
  64. [64]
    CMS collaboration, Search for heavy Majorana neutrinos in μ + μ +[μ μ ] and e + e +[e e ] events in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 717 (2012) 109 [arXiv:1207.6079] [INSPIRE].ADSGoogle Scholar
  65. [65]
    ATLAS collaboration, Search for Majorana neutrino production in pp collisions at \( \sqrt{s} \) = 7 TeV in dimuon final states with the ATLAS detector, ATLAS-CONF-2012-139 (2012).
  66. [66]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703-703] [INSPIRE].
  67. [67]
    R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].ADSGoogle Scholar
  68. [68]
    G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  69. [69]
    S.N. Gninenko, M.M. Kirsanov, N.V. Krasnikov and V.A. Matveev, Detection of heavy Majorana neutrinos and right-handed bosons, Phys. Atom. Nucl. 70 (2007) 441 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    F. del Aguila, J.A. Aguilar-Saavedra and J. de Blas, Trilepton signals: the golden channel for seesaw searches at LHC, Acta Phys. Polon. B 40 (2009) 2901 [arXiv:0910.2720] [INSPIRE].ADSGoogle Scholar
  71. [71]
    P.S.B. Dev, C.-H. Lee and R.N. Mohapatra, Natural TeV-Scale Left-Right Seesaw for Neutrinos and Experimental Tests, Phys. Rev. D 88 (2013) 093010 [arXiv:1309.0774] [INSPIRE].ADSGoogle Scholar
  72. [72]
    CMS collaboration, Search for heavy neutrinos and W[R] bosons with right-handed couplings in a left-right symmetric model in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 109 (2012) 261802 [arXiv:1210.2402] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    K.S. Babu, S. Nandi and Z. Tavartkiladze, New Mechanism for Neutrino Mass Generation and Triply Charged Higgs Bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [INSPIRE].ADSGoogle Scholar
  74. [74]
    G. Bambhaniya, J. Chakrabortty, S. Goswami and P. Konar, Generation of Neutrino mass from new physics at TeV scale and Multi-lepton Signatures at the LHC, Phys. Rev. D 88 (2013) 075006 [arXiv:1305.2795] [INSPIRE].ADSGoogle Scholar
  75. [75]
    J.A. Grifols, A. Mendez and G.A. Schuler, Production and Decay of Doubly Charged Higgs Bosons of Left-Right Symmetric Models, Mod. Phys. Lett. A 4 (1989) 1485 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    A. Djouadi, J. Kalinowski and P.M. Zerwas, Two and three-body decay modes of SUSY Higgs particles, Z. Phys. C 70 (1996) 435 [hep-ph/9511342] [INSPIRE].Google Scholar
  77. [77]
    P. Fileviez Perez, T. Han, G.-y. Huang, T. Li and K. Wang, Neutrino Masses and the CERN LHC: Testing Type II Seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [INSPIRE].ADSGoogle Scholar
  78. [78]
    M. Aoki, S. Kanemura and K. Yagyu, Testing the Higgs triplet model with the mass difference at the LHC, Phys. Rev. D 85 (2012) 055007 [arXiv:1110.4625] [INSPIRE].ADSGoogle Scholar
  79. [79]
    J. Hisano and K. Tsumura, Higgs boson mixes with an SU(2) septet representation, Phys. Rev. D 87 (2013) 053004 [arXiv:1301.6455] [INSPIRE].ADSGoogle Scholar
  80. [80]
    M. Raidal, A. van der Schaaf, I. Bigi, M.L. Mangano, Y.K. Semertzidis et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    P. Nath, B.D. Nelson, H. Davoudiasl, B. Dutta, D. Feldman et al., The Hunt for New Physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202 (2010) 185 [arXiv:1001.2693] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    F. del Aguila, M. Chala, A. Santamaria and J. Wudka, Discriminating between lepton number violating scalars using events with four and three charged leptons at the LHC, Phys. Lett. B 725 (2013) 310 [arXiv:1305.3904] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    F. del Aguila, M. Chala, A. Santamaria and J. Wudka, Distinguishing between lepton number violating scalars at the LHC, EPJ Web Conf. 60 (2013) 17002 [arXiv:1307.0510] [INSPIRE].CrossRefGoogle Scholar
  84. [84]
    F. del Aguila, M. Chala, A. Santamaria and J. Wudka, Lepton Number Violation and Scalar Searches at the LHC, Acta Phys. Polon. B 44 (2013) 2139 [arXiv:1311.2950] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A. Alloul, M. Frank, B. Fuks and M.R. de Traubenberg, Doubly-charged particles at the Large Hadron Collider, Phys. Rev. D 88 (2013) 075004 [arXiv:1307.1711] [INSPIRE].ADSGoogle Scholar
  86. [86]
    K.S. Babu, Model ofCalculableMajorana Neutrino Masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J.F. Gunion, C. Loomis and K.T. Pitts, Searching for doubly charged Higgs bosons at future colliders, eConf C 960625 (1996) LTH096 [hep-ph/9610237] [INSPIRE].
  88. [88]
    V. Rentala, W. Shepherd and S. Su, A Simplified Model Approach to Same-sign Dilepton Resonances, Phys. Rev. D 84 (2011) 035004 [arXiv:1105.1379] [INSPIRE].ADSGoogle Scholar
  89. [89]
    M. Aoki, S. Kanemura and K. Yagyu, Doubly-charged scalar bosons from the doublet, Phys. Lett. B 702 (2011) 355 [Erratum ibid. B 706 (2012) 495] [arXiv:1105.2075] [INSPIRE].
  90. [90]
    K. Yagyu, Higgs sectors with exotic scalar fields, arXiv:1304.6338 [INSPIRE].
  91. [91]
    B. Ren, K. Tsumura and X.-G. He, A Higgs Quadruplet for Type III Seesaw and Implications for μeγ and μe Conversion, Phys. Rev. D 84 (2011) 073004 [arXiv:1107.5879] [INSPIRE].ADSGoogle Scholar
  92. [92]
    C.-W. Chiang, T. Nomura and K. Tsumura, Search for doubly charged Higgs bosons using the same-sign diboson mode at the LHC, Phys. Rev. D 85 (2012) 095023 [arXiv:1202.2014] [INSPIRE].ADSGoogle Scholar
  93. [93]
    A.G. Akeroyd and M. Aoki, Single and pair production of doubly charged Higgs bosons at hadron colliders, Phys. Rev. D 72 (2005) 035011 [hep-ph/0506176] [INSPIRE].ADSGoogle Scholar
  94. [94]
    T. Han, B. Mukhopadhyaya, Z. Si and K. Wang, Pair production of doubly-charged scalars: Neutrino mass constraints and signals at the LHC, Phys. Rev. D 76 (2007) 075013 [arXiv:0706.0441] [INSPIRE].ADSGoogle Scholar
  95. [95]
    E.J. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev. 45 (1934) 729 [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    E.J. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev. 45 (1934) 729 [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    M. Drees, R.M. Godbole, M. Nowakowski and S.D. Rindani, γγ processes at high-energy pp colliders, Phys. Rev. D 50 (1994) 2335 [hep-ph/9403368] [INSPIRE]ADSGoogle Scholar
  98. [98]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    E. Bertuzzo, T.S. Ray, H. de Sandes and C.A. Savoy, On Composite Two Higgs Doublet Models, JHEP 05 (2013) 153 [arXiv:1206.2623] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    M. Chala, hγγ excess and Dark Matter from Composite Higgs Models, JHEP 01 (2013) 122 [arXiv:1210.6208] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    L. Vecchi, The Natural Composite Higgs, arXiv:1304.4579 [INSPIRE].
  103. [103]
    M. Muhlleitner and M. Spira, A Note on doubly charged Higgs pair production at hadron colliders, Phys. Rev. D 68 (2003) 117701 [hep-ph/0305288] [INSPIRE].ADSGoogle Scholar
  104. [104]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    N.D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    H. Sugiyama, K. Tsumura and H. Yokoya, Discrimination of models including doubly charged scalar bosons by using tau lepton decay distributions, Phys. Lett. B 717 (2012) 229 [arXiv:1207.0179] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    S. Kanemura, K. Yagyu and H. Yokoya, First constraint on the mass of doubly-charged Higgs bosons in the same-sign diboson decay scenario at the LHC, Phys. Lett. B 726 (2013) 316 [arXiv:1305.2383] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    C. Englert, E. Re and M. Spannowsky, Pinning down Higgs triplets at the LHC, Phys. Rev. D 88 (2013) 035024 [arXiv:1306.6228] [INSPIRE].ADSGoogle Scholar
  109. [109]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  111. [111]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  113. [113]
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    M. Duerr, P. Fileviez Perez and M.B. Wise, Gauge Theory for Baryon and Lepton Numbers with Leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    P. Fileviez Perez and M.B. Wise, Low Scale Quark-Lepton Unification, Phys. Rev. D 88 (2013) 057703 [arXiv:1307.6213] [INSPIRE].ADSGoogle Scholar
  117. [117]
    A.L. Read, Presentation of search results: The CL(s) technique, J. Phys. G 28 (2002) 2693 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.CAFPE and Dpto. de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain

Personalised recommendations