Advertisement

The last vestiges of naturalness

  • Asimina ArvanitakiEmail author
  • Masha Baryakhtar
  • Xinlu Huang
  • Ken Van Tilburg
  • Giovanni Villadoro
Open Access
Article

Abstract

Direct LHC bounds on colored SUSY particles now corner naturalness more than the measured value of the Higgs mass does. Bounds on the gluino are of particular importance, since it radiatively “sucks” up the stop and Higgs-up soft masses. As a result, even models that easily accommodate a 125 GeV Higgs are almost as tuned as the simplest version of SUSY, the MSSM: at best at the percent level. In this paper, we further examine how current LHC results constrain naturalness in three classes of models that may relax LHC bounds on sparticles: split families, baryonic RPV, and Dirac gauginos. In models of split families and bRPV, the bounds on the gluino are only slightly reduced, resulting in a few percent tuning. In particular, having a natural spectrum in bRPV models typically implies that tops, W s, and Zs are easily produced in the cascade decays of squarks and gluinos. The resulting leptons and missing energy push the gluino mass limit above 1 TeV. Even when the gluino has a Dirac mass and does not contribute to the stop mass at one loop, tuning reappears in calculable models because there is no symmetry imposing the supersoft limit. We conclude that, even if sparticles are found at LHC-14, naturalness will not emerge triumphant.

Keywords

Beyond Standard Model Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].ADSGoogle Scholar
  2. [2]
    S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R. Barbieri and G. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV,JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].ADSGoogle Scholar
  6. [6]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].ADSGoogle Scholar
  7. [7]
    N. Craig, J. Galloway and S. Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 [INSPIRE].
  8. [8]
    A. Arvanitaki and G. Villadoro, A Non Standard Model Higgs at the LHC as a Sign of Naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Horton and G. Ross, Naturalness and Focus Points with Non-Universal Gaugino Masses, Nucl. Phys. B 830 (2010) 221 [arXiv:0908.0857] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    G.F. Giudice, H.D. Kim and R. Rattazzi, Natural mu and B mu in gauge mediation, Phys. Lett. B 660 (2008) 545 [arXiv:0711.4448] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. De Simone, R. Franceschini, G.F. Giudice, D. Pappadopulo and R. Rattazzi, Lopsided Gauge Mediation, JHEP 05 (2011) 112 [arXiv:1103.6033] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2013-047 (2013).
  15. [15]
    G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The Minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a Light Higgs Boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A.G. Cohen, D. Kaplan and A. Nelson, The More minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS Detector., ATLAS-CONF-2013-061 (2013).
  25. [25]
    ATLAS collaboration, Search for direct production of the top squark in the all-hadronic ttbar + etmiss final state in 21 fb-1 of p-pcollisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-024 (2013).
  26. [26]
    CMS collaboration, Search for supersymmetry using razor variables in events with b-jets in pp collisions at 8 tev, CMS-PAS-SUS-13-004.
  27. [27]
    CMS collaboration, Search for top-squark pair production in the single-lepton final state in pp collisions at \( \sqrt{s} \) = 8 TeV, CERN-PH-EP-2013-148 (2013) [CMS-SUS-13-011-003].
  28. [28]
    CMS collaboration, Search for SUSY Partners of Top and Higgs Using Diphoton Higgs Decays, CMS-PAS-SUS-13-014.
  29. [29]
    A. Delgado, G.F. Giudice, G. Isidori, M. Pierini and A. Strumia, The light stop window, Eur. Phys. J. C 73 (2013) 2370 [arXiv:1212.6847] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    CMS collaboration, Search for electroweak production of charginos, neutralinos and sleptons using leptonic final states in pp collisions at 8 TeV, CMS-PAS-SUS-13-006.
  31. [31]
    P. Meade, M. Reece and D. Shih, Prompt Decays of General Neutralino NLSPs at the Tevatron, JHEP 05 (2010) 105 [arXiv:0911.4130] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Howe and P. Saraswat, Excess Higgs Production in Neutralino Decays, JHEP 10 (2012) 065 [arXiv:1208.1542] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    ATLAS collaboration, Search for chargino and neutralino production in final states with one lepton, two b-jets consistent with a Higgs boson and missing transverse momentum with the ATLAS detector in 20.3 fb −1 of \( \sqrt{s} \) = 8 TeV pp collisions, ATLAS-CONF-2013-093 (2013).
  34. [34]
    LEP2 SUSY Working Group, Combined lep selectron/smuon/stau results, 183-208 GeV, LEPSUSYWG/04-01.1 (2004).
  35. [35]
    ATLAS collaboration, Search for Supersymmetry in Events with Large Missing Transverse Momentum, Jets and at Least One Tau Lepton in 21 f b −1 of \( \sqrt{s} \) = 8 TeV Proton-Proton Collision Data with the ATLAS Detector, ATLAS-CONF-2013-026 (2013).
  36. [36]
    ATLAS collaboration, A search for heavy long-lived sleptons using 16 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-058 (2013).
  37. [37]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].ADSGoogle Scholar
  38. [38]
    G. Dvali and A. Pomarol, Anomalous U(1) as a mediator of supersymmetry breaking, Phys. Rev. Lett. 77 (1996) 3728 [hep-ph/9607383] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    E. Hardy and J. March-Russell, Retrofitted Natural Supersymmetry from a U(1), JHEP 05 (2013) 120 [arXiv:1302.5423] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    M. Gabella, T. Gherghetta and J. Giedt, A Gravity dual and LHC study of single-sector supersymmetry breaking, Phys. Rev. D 76 (2007) 055001 [arXiv:0704.3571] [INSPIRE].ADSGoogle Scholar
  41. [41]
    N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP 04 (2012) 116 [arXiv:1203.0572] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    N. Craig, D. Green and A. Katz, (De)Constructing a Natural and Flavorful Supersymmetric Standard Model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    N. Craig, M. McCullough and J. Thaler, Flavor Mediation Delivers Natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    E. Hardy, Is Natural SUSY Natural?, JHEP 10 (2013) 133 [arXiv:1306.1534] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    CMS collaboration,, Search for RPV supersymmetry with three or more leptons and b-tags, CMS-PAS-SUS-12-027.
  47. [47]
    J.A. Evans and Y. Kats, LHC Coverage of RPV MSSM with Light Stops, JHEP 04 (2013) 028 [arXiv:1209.0764] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    Z. Han, A. Katz, M. Son and B. Tweedie, Boosting Searches for Natural SUSY with RPV via Gluino Cascades, Phys. Rev. D 87 (2013) 075003 [arXiv:1211.4025] [INSPIRE].ADSGoogle Scholar
  49. [49]
    B. Allanach and B. Gripaios, Hide and Seek With Natural Supersymmetry at the LHC, JHEP 05 (2012) 062 [arXiv:1202.6616] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    C. Brust, A. Katz and R. Sundrum, SUSY Stops at a Bump, JHEP 08 (2012) 059 [arXiv:1206.2353] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    CMS collaboration, Search for three-jet resonances in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 718 (2012) 329 [arXiv:1208.2931] [INSPIRE].ADSGoogle Scholar
  52. [52]
    ATLAS collaboration, Search for pair production of massive particles decaying into three quarks with the ATLAS detector in \( \sqrt{s} \) = 7 TeV pp collisions at the LHC, JHEP 12 (2012) 086 [arXiv:1210.4813] [INSPIRE].ADSGoogle Scholar
  53. [53]
    B. Bhattacherjee, J.L. Evans, M. Ibe, S. Matsumoto and T.T. Yanagida, Natural SUSYs Last Hope: R-parity Violation via UDD Operators, Phys. Rev. D 87 (2013) 115002 [arXiv:1301.2336] [INSPIRE].ADSGoogle Scholar
  54. [54]
    R. Franceschini and R. Mohapatra, New Patterns of Natural R-Parity Violation with Supersymmetric Gauged Flavor, JHEP 04 (2013) 098 [arXiv:1301.3637] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    L. Di Luzio, M. Nardecchia and A. Romanino, A framework for baryonic R-parity violation in grand unified theories, Phys. Rev. D 88 (2013) 115008 [arXiv:1305.7034] [INSPIRE].ADSGoogle Scholar
  56. [56]
    ALEPH collaboration, A. Heister et al., Search for supersymmetric particles with R parity violating decays in e + e collisions at \( \sqrt{s} \) up to 209-GeV, Eur. Phys. J. C 31 (2003) 1 [hep-ex/0210014] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    ATLAS collaboration, Search for strongly produced superpartners in final states with two same sign leptons with the ATLAS detector using 21 fb-1 of proton-proton collisions at \( \sqrt{s} \) = 8 TeV., ATLAS-CONF-2013-007 (2013).
  58. [58]
    ATLAS collaboration, Search for massive particles in multijet signatures with the ATLAS detector in \( \sqrt{s} \) = 8 TeV pp collisions at the LHC, ATLAS-CONF-2013-091 (2013).
  59. [59]
    M. Asano, K. Rolbiecki and K. Sakurai, Can R-parity violation hide vanilla supersymmetry at the LHC?, JHEP 01 (2013) 128 [arXiv:1209.5778] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S. Dimopoulos and L.J. Hall, Baryogenesis at the MeV Era, Phys. Lett. B 196 (1987) 135 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    R. Barbieri and A. Masiero, Supersymmetric Models with Low-Energy Baryon Number Violation, Nucl. Phys. B 267 (1986) 679 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    Y. Cui and R. Sundrum, Baryogenesis for weakly interacting massive particles, Phys. Rev. D 87 (2013) 116013 [arXiv:1212.2973] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J. Goity and M. Sher, Bounds on delta B = 1 couplings in the supersymmetric standard model, Phys. Lett. B 346 (1995) 69 [Erratum ibid. B 385 (1996) 500] [hep-ph/9412208] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    CMS collaboration, Search for long-lived particles decaying to photons and missing energy in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 722 (2013) 273 [arXiv:1212.1838] [INSPIRE].ADSGoogle Scholar
  65. [65]
    ATLAS collaboration, Search for new phenomena using final states with large jet multiplicities and missing transverse momentum with ATLAS in 20 fb −1 of \( \sqrt{s} \) = 8 TeV proton-proton collisions, ATLAS-CONF-2013-054 (2013).
  66. [66]
    CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables AlphaT and b-quark multiplicity in pp collisions at 8 TeV, Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985] [INSPIRE].ADSGoogle Scholar
  67. [67]
    CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 03 (2013) 037 [Erratum ibid. 1307 (2013) 041] [arXiv:1212.6194] [INSPIRE].ADSGoogle Scholar
  68. [68]
    CMS collaboration, Search for new physics in events with same-sign dileptons and jets in pp collisions at 8 TeV, CMS-PAS-SUS-13-013.
  69. [69]
    P. Fayet, Massive gluinos, Phys. Lett. B 78 (1978) 417 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Polchinski and L. Susskind, Breaking of Supersymmetry at Intermediate-Energy, Phys. Rev. D 26 (1982) 3661 [INSPIRE].ADSGoogle Scholar
  71. [71]
    L. Hall and L. Randall, U(1)-R symmetric supersymmetry, Nucl. Phys. B 352 (1991) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A.E. Nelson, N. Rius, V. Sanz and M. Ünsal, The Minimal supersymmetric model without a mu term, JHEP 08 (2002) 039 [hep-ph/0206102] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    I. Antoniadis, K. Benakli, A. Delgado and M. Quirós, A New gauge mediation theory, Adv. Stud. Theor. Phys. 2 (2008) 645 [hep-ph/0610265] [INSPIRE].MathSciNetGoogle Scholar
  75. [75]
    S.D.L. Amigo, A.E. Blechman, P.J. Fox and E. Poppitz, R-symmetric gauge mediation, JHEP 01 (2009) 018 [arXiv:0809.1112] [INSPIRE].CrossRefGoogle Scholar
  76. [76]
    G.D. Kribs and A. Martin, Supersoft Supersymmetry is Super-Safe, Phys. Rev. D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M. Heikinheimo, M. Kellerstein and V. Sanz, How Many Supersymmetries?, JHEP 04 (2012) 043 [arXiv:1111.4322] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].ADSGoogle Scholar
  79. [79]
    K. Benakli and M. Goodsell, Dirac Gauginos, Gauge Mediation and Unification, Nucl. Phys. B 840 (2010) 1 [arXiv:1003.4957] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    CMS collaboration, Search for New Physics in the Multijets and Missing Momentum Final State in Proton-Proton Collisions at 8 TeV, CMS-PAS-SUS-13-012.
  81. [81]
    CMS collaboration, Search for supersymmetry with the razor variables at CMS, CMS-PAS-SUS-12-005.
  82. [82]
    CMS collaboration, Search for direct EWK production of SUSY particles in multilepton modes with 8TeV data, CMS-PAS-SUS-12-022.
  83. [83]
    K. Benakli and M. Goodsell, Dirac Gauginos in General Gauge Mediation, Nucl. Phys. B 816 (2009) 185 [arXiv:0811.4409] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  84. [84]
    L.M. Carpenter, Dirac Gauginos, Negative Supertraces and Gauge Mediation, JHEP 09 (2012) 102 [arXiv:1007.0017] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    K. Benakli, M.D. Goodsell and F. Staub, Dirac Gauginos and the 125 GeV Higgs, JHEP 06 (2013) 073 [arXiv:1211.0552] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    M.D. Goodsell, Two-loop RGEs with Dirac gaugino masses, JHEP 01 (2013) 066 [arXiv:1206.6697] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].ADSGoogle Scholar
  88. [88]
    K. Benakli, M.D. Goodsell and A.-K. Maier, Generating mu and Bmu in models with Dirac Gauginos, Nucl. Phys. B 851 (2011) 445 [arXiv:1104.2695] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].
  90. [90]
    H. Cheng, D. Kaplan, M. Schmaltz and W. Skiba, Deconstructing gaugino mediation, Phys. Lett. B 515 (2001) 395 [hep-ph/0106098] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    C. Csáki, J. Erlich, C. Grojean and G.D. Kribs, 4 − D constructions of supersymmetric extra dimensions and gaugino mediation, Phys. Rev. D 65 (2002) 015003 [hep-ph/0106044] [INSPIRE].ADSGoogle Scholar
  92. [92]
    A. De Simone, J. Fan, M. Schmaltz and W. Skiba, Low-scale gaugino mediation, lots of leptons at the LHC, Phys. Rev. D 78 (2008) 095010 [arXiv:0808.2052] [INSPIRE].ADSGoogle Scholar
  93. [93]
    F. Mescia and J. Virto, Natural SUSY and Kaon Mixing in view of recent results from Lattice QCD, Phys. Rev. D 86 (2012) 095004 [arXiv:1208.0534] [INSPIRE].ADSGoogle Scholar
  94. [94]
    G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical Soft Terms and Flavor Physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A Non Standard Supersymmetric Spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    A. Crivellin et al., SUSY FLAVOR v2: A Computational tool for FCNC and CP-violating processes in the MSSM, Comput. Phys. Commun. 184 (2013) 1004 [arXiv:1203.5023] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [INSPIRE].ADSGoogle Scholar
  98. [98]
    G. Durieux and C. Smith, The same-sign top signature of R-parity violation, JHEP 10 (2013) 068 [arXiv:1307.1355] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    J. Berger, M. Perelstein, M. Saelim and P. Tanedo, The Same-Sign Dilepton Signature of RPV/MFV SUSY, JHEP 04 (2013) 077 [arXiv:1302.2146] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  102. [102]
    P. Meade and M. Reece, BRIDGE: Branching ratio inquiry/decay generated events, hep-ph/0703031 [INSPIRE].
  103. [103]
    M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  105. [105]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  106. [106]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Asimina Arvanitaki
    • 1
    Email author
  • Masha Baryakhtar
    • 1
  • Xinlu Huang
    • 1
  • Ken Van Tilburg
    • 1
  • Giovanni Villadoro
    • 1
    • 2
  1. 1.Stanford Institute for Theoretical Physics, Department of PhysicsStanford UniversityStanfordU.S.A
  2. 2.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations