Advertisement

B-physics from Nf = 2 tmQCD: the Standard Model and beyond

  • The ETM collaboration
  • N. Carrasco
  • M. Ciuchini
  • P. DimopoulosEmail author
  • R. Frezzotti
  • V. Giménez
  • G. Herdoiza
  • V. Lubicz
  • C. Michael
  • E. Picca
  • G. C. Rossi
  • F. Sanfilippo
  • A. Shindler
  • L. Silvestrini
  • S. Simula
  • C. Tarantino
Open Access
Article

Abstract

We present a lattice QCD computation of the b-quark mass, the B and B s decay constants, the B-mixing bag prameters for the full four-fermion operator basis as well as determinations for ξ and f Bq \( \sqrt{{B_i^{(q) }}} \) extrapolated to the continuum limit and to the physical pion mass. We used N f = 2 twisted mass Wilson fermions at four values of the lattice spacing with pion masses ranging from 280 to 500 MeV. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out on ratios of physical quantities computed at nearby quark masses, exploiting the fact that they have an exactly known infinite mass limit. Our results are m b (m b , \( \overline{\mathrm{MS}} \)) = 4.29(12) GeV, f Bs = 228(8) MeV, f B = 189(8) MeV and f Bs /f B = 1.206(24). Moreover with our results for the bag-parameters we find ξ = 1.225(31), \( {{{B_1^{(s) }}} \left/ {{B_1^{(d) }}} \right.} \) = 1.01(2), f Bd \( \sqrt{{\widehat{B}_1^{(d) }}} \) = 216(10) MeV and 1 f Bs \( \sqrt{{\widehat{B}_1^{(s) }}} \) = 262(10) MeV. We also computed the bag parameters for the complete basis of the four-fermion operators which are required in beyond the SM theories. By using these results for the bag parameters we are able to provide a refined Unitarity Triangle analysis in the presence of New Physics, improving the bounds coming from B (s)\( {{\overline{B}}_{(s) }} \) mixing.

Keywords

Lattice QCD B-Physics Beyond Standard Model Quark Masses and SM Parameters 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C. Tarantino, Lattice flavor physics with an eye to SuperB, PoS(LATTICE2012)012.
  2. [2]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  3. [3]
    Belle collaboration, I. Adachi et al., Measurement of B τ \( {{\overline{\nu}}_{\tau }} \) with a Hadronic Tagging Method Using the Full Data Sample of Belle, Phys. Rev. Lett. 110 (2013) 131801 [arXiv:1208.4678] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    BaBar collaboration, J.P. Lees et al., Evidence of Bτν decays with hadronic B tags, Phys. Rev. D 88 (2013) 031102 [arXiv:1207.0698] [INSPIRE].ADSGoogle Scholar
  5. [5]
    UTfit collaboration, M. Bona et al., An Improved Standard Model Prediction Of BR(B¿ tau nu) And Its Implications For New Physics, Phys. Lett. B 687 (2010) 61 [arXiv:0908.3470] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
  7. [7]
    LHCb collaboration, First Evidence for the Decay \( B_s^0 \)μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    CMS collaboration, Measurement of the \( B_s^0 \)μ + μ branching fraction and search for B 0μ + μ with the CMS Experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    LHCb collaboration, Measurement of the \( B_s^0 \)μ + μ branching fraction and search for B 0μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    CMS and LHCb collaborations, Combination of results on the rare decays \( B_{(s)}^0 \)μ + μ from the CMS and LHCb experiments, CMS-PAS-BPH-13-007 (2013).
  11. [11]
    A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the Standard Model prediction for \( \mathcal{B} \)(B s,dμ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.J. Buras, R. Fleischer, J. Girrbach and R. Knegjens, Probing New Physics with the B sμ + μ Time-Dependent Rate, JHEP 1307 (2013) 77 [arXiv:1303.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Laiho, E. Lunghi and R. Van de Water, Flavor Physics in the LHC era: The Role of the lattice, PoS(LATTICE 2011)018 [arXiv:1204.0791] [INSPIRE].
  14. [14]
    S. Descotes-Genon, Combined constraints on CP-violation in the Standard Model and beyond, Nucl. Phys. Proc. Suppl. 241-242 (2013) 95 [arXiv:1209.4016] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    UTfit collaboration, D. Derkach, Unitarity Triangle Fitter Results for CKM Angles, arXiv:1301.3300 [INSPIRE].
  16. [16]
    LHCb collaboration, Measurement of CP violation and the \( B_s^0 \) meson decay width difference with \( B_s^0 \)J/ψK + K and \( B_s^0 \)J/ψπ + π decays, Phys. Rev. D 87 (2013) 112010 [arXiv:1304.2600] [INSPIRE].Google Scholar
  17. [17]
    ETM collaboration, P. Dimopoulos et al., Lattice QCD determination of m b , f B and f Bs with twisted mass Wilson fermions, JHEP 01 (2012) 046 [arXiv:1107.1441] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    ETM collaboration, B. Blossier et al., A Proposal for B-physics on current lattices, JHEP 04 (2010) 049 [arXiv:0909.3187] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C.M. Bouchard, E.D. Freeland, C. Bernard, A.X. El-Khadra, E. Gamiz et al., Neutral B mixing from 2 + 1 flavor lattice-QCD: the Standard Model and beyond, PoS(LATTICE 2011)274 [arXiv:1112.5642] [INSPIRE].
  20. [20]
    D. Becirevic, S. Fajfer, S. Prelovsek and J. Zupan, Chiral corrections and lattice QCD results for \( {{{{F_{{{B_s}}}}}} \left/ {{{f_{{{B_d}}}}}} \right.} \) and \( {{{\varDelta {m_{{{B_s}}}}}} \left/ {{\varDelta {m_{{{B_d}}}}}} \right.} \), Phys. Lett. B 563 (2003) 150 [hep-ph/0211271] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A Complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.A. Bagger, K.T. Matchev and R.-J. Zhang, QCD corrections to flavor changing neutral currents in the supersymmetric standard model, Phys. Lett. B 412 (1997) 77 [hep-ph/9707225] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.R. Allton, L. Conti, A. Donini, V. Giménez, L. Giusti et al., B parameters for Delta S = 2 supersymmetric operators, Phys. Lett. B 453 (1999) 30 [hep-lat/9806016] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Becirevic, V. Giménez, G. Martinelli, M. Papinutto and J. Reyes, B parameters of the complete set of matrix elements of ΔB = 2 operators from the lattice, JHEP 04 (2002) 025 [hep-lat/0110091] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A.J. Buras, M. Misiak and J. Urban, Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model, Nucl. Phys. B 586 (2000) 397 [hep-ph/0005183] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, Next-to-leading order QCD corrections to the lifetime difference of B s mesons, Phys. Lett. B 459 (1999) 631 [hep-ph/9808385] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Bethke, The 2009 World Average of α s, Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Dalgic, A. Gray, E. Gamiz, C.T.H. Davies, G.P. Lepage et al., \( B_s^0-\overline{B}_s^0 \) mixing parameters from unquenched lattice QCD, Phys. Rev. D 76 (2007) 011501 [hep-lat/0610104] [INSPIRE].ADSGoogle Scholar
  29. [29]
    UTfit collaboration, M. Bona et al., Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Z. Ligeti, M. Papucci, G. Perez and J. Zupan, Implication s of the dimuon CP asymmetry in B d,s decays, Phys. Rev. Lett. 105 (2010) 131601 [arXiv:1006.0432] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A.J. Buras, K. Gemmler and G. Isidori, Quark flavour mixing with right-handed currents: an effective theory approach, Nucl. Phys. B 843 (2011) 107 [arXiv:1007.1993] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, A. Jantsch et al., Anatomy of New Physics in B\( \overline{B} \) mixing, Phys. Rev. D 83 (2011) 036004 [arXiv:1008.1593] [INSPIRE].ADSGoogle Scholar
  33. [33]
    E. Lunghi and A. Soni, Possible evidence for the breakdown of the CKM-paradigm of CP-violation, Phys. Lett. B 697 (2011) 323 [arXiv:1010.6069] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Y. Adachi, N. Kurahashi, N. Maru and K. Tanabe, B 0\( {{\overline{B}}^0} \) Mixing in Gauge-Higgs Unification, Phys. Rev. D 85 (2012) 096001 [arXiv:1112.6062] [INSPIRE].ADSGoogle Scholar
  35. [35]
    L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, Universal Constraints on Low-EnergyFlavour Models, JHEP 07 (2012) 004 [arXiv:1204.1275] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi et al., On Partial Compositeness and the CP asymmetry in charm decays, Nucl. Phys. B 867 (2013) 429 [arXiv:1205.5803] [INSPIRE].Google Scholar
  37. [37]
    F. Mescia and J. Virto, Natural SUSY and Kaon Mixing in view of recent results from Lattice QCD, Phys. Rev. D 86 (2012) 095004 [arXiv:1208.0534] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A.J. Buras, F. De Fazio, J. Girrbach and M.V. Carlucci, The Anatomy of Quark Flavour Observables in 331 Models in the Flavour Precision Era, JHEP 02 (2013) 023 [arXiv:1211.1237] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    ETM collaboration, V. Bertone et al., Kaon Mixing Beyond the SM from N f = 2 tmQCD and model independent constraints from the UTA, JHEP 03 (2013) 089 [Erratum ibid. 1307 (2013)143] [arXiv:1207.1287] [INSPIRE].
  40. [40]
    P. Weisz, Continuum Limit Improved Lattice Action for Pure Yang-Mills Theory. 1., Nucl. Phys. B 212 (1983) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    Alpha collaboration, R. Frezzotti, P.A. Grassi, S. Sint and P. Weisz, Lattice QCD with a chirally twisted mass term, JHEP 08 (2001) 058 [hep-lat/0101001] [INSPIRE].Google Scholar
  42. [42]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. 1. O(a) improvement, JHEP 08 (2004) 007 [hep-lat/0306014] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks, Phys. Lett. B 650 (2007) 304 [hep-lat/0701012] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    ETM collaboration, P. Boucaud et al., Dynamical Twisted Mass Fermions with Light Quarks: Simulation and Analysis Details, Comput. Phys. Commun. 179 (2008) 695 [arXiv:0803.0224] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    ETM collaboration, R. Baron et al., Light Meson Physics from Maximally Twisted Mass Lattice QCD, JHEP 08 (2010) 097 [arXiv:0911.5061] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Frezzotti and G.C. Rossi, Chirally improving Wilson fermions. II. Four-quark operators, JHEP 10 (2004) 070 [hep-lat/0407002] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    ETM collaboration, M. Constantinou et al., Non-perturbative renormalization of quark bilinear operators with N f = 2 (tmQCD) Wilson fermions and the tree-level improved gauge action, JHEP 08 (2010) 068 [arXiv:1004.1115] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    ETM collaboration, B. Blossier et al., Average up/down, strange and charm quark masses with N f = 2 twisted mass lattice QCD, Phys. Rev. D 82 (2010) 114513 [arXiv:1010.3659] [INSPIRE].ADSGoogle Scholar
  49. [49]
    APE collaboration, M. Albanese et al., Glueball Masses and String Tension in Lattice QCD, Phys. Lett. B 192 (1987) 163 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Gusken, A Study of smearing techniques for hadron correlation functions, Nucl. Phys. Proc. Suppl. 17 (1990) 361 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    ETM collaboration, K. Jansen, C. Michael, A. Shindler and M. Wagner, The Static-light meson spectrum from twisted mass lattice QCD, JHEP 12 (2008) 058 [arXiv:0810.1843] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    K.G. Chetyrkin and A. Retey, Renormalization and running of quark mass and field in the regularization invariant and MS-bar schemes at three loops and four loops, Nucl. Phys. B 583 (2000) 3 [hep-ph/9910332] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three Loop Relation of Quark (Modified) Ms and Pole Masses, Z. Phys. C 48 (1990) 673 [INSPIRE].ADSGoogle Scholar
  54. [54]
    D.J. Broadhurst, N. Gray and K. Schilcher, Gauge invariant on-shell Z(2) in QED, QCD and the effective field theory of a static quark, Z. Phys. C 52 (1991) 111 [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    K.G. Chetyrkin and M. Steinhauser, Short distance mass of a heavy quark at order \( \alpha_s^3 \), Phys. Rev. Lett. 83 (1999) 4001 [hep-ph/9907509] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    K. Melnikov and T.v. Ritbergen, The Three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Roessl, Pion kaon scattering near the threshold in chiral SU(2) perturbation theory, Nucl. Phys. B 555 (1999) 507 [hep-ph/9904230] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    K.G. Chetyrkin and A.G. Grozin, Three loop anomalous dimension of the heavy light quark current in HQET, Nucl. Phys. B 666 (2003) 289 [hep-ph/0303113] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    ETM collaboration, B. Blossier et al., Pseudoscalar decay constants of kaon and D-mesons from N f = 2 twisted mass Lattice QCD, JHEP 07 (2009) 043 [arXiv:0904.0954] [INSPIRE].Google Scholar
  60. [60]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    D. Becirevic, B. Blossier, E. Chang and B. Haas, g B*Bπ -coupling in the static heavy quark limit, Phys. Lett. B 679 (2009) 231 [arXiv:0905.3355] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    G. Colangelo, S. Dürr, A. Juttner, L. Lellouch, H. Leutwyler et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    K. Osterwalder and E. Seiler, Gauge Field Theories on the Lattice, Annals Phys. 110 (1978) 440 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    M. Bochicchio, L. Maiani, G. Martinelli, G.C. Rossi and M. Testa, Chiral Symmetry on the Lattice with Wilson Fermions, Nucl. Phys. B 262 (1985) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    ETM collaboration, M. Constantinou et al., B K -parameter from N f = 2 twisted mass lattice QCD, Phys. Rev. D 83 (2011) 014505 [arXiv:1009.5606] [INSPIRE].ADSGoogle Scholar
  66. [66]
    P. Dimopoulos, H. Simma and A. Vladikas, Quenched B K -parameter from Osterwalder-Seiler tmQCD quarks and mass-splitting discretization effects, JHEP 07 (2009) 007 [arXiv:0902.1074] [INSPIRE].Google Scholar
  67. [67]
    ETM collaboration, N. Carrasco et al., K 0\( {{\overline{K}}^0} \) mixing in the Standard Model from N f = 2 + 1 + 1 Twisted Mass Lattice QCD, PoS(LATTICE2011)276 [arXiv:1111.1262] [INSPIRE].
  68. [68]
    G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A General method for nonperturbative renormalization of lattice operators, Nucl. Phys. B 445 (1995) 81 [hep-lat/9411010] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    D. Becirevic, S. Fajfer and J.F. Kamenik, Chiral behavior of the \( B_{d,s}^0-\overline{B}_{d,s}^0 \) mixing amplitude in the standard model and beyond, JHEP 06 (2007) 003 [hep-ph/0612224] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    D. Becirevic and F. Sanfilippo, Theoretical estimate of the D *Dπ decay rate, Phys. Lett. B 721 (2013) 94 [arXiv:1210.5410] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    ETM collaboration, B. Blossier et al., Ghost-gluon coupling, power corrections and \( {\varLambda_{{\overline{\mathrm{MS}}}}} \) from twisted-mass lattice QCD at N f = 2, Phys. Rev. D 82 (2010) 034510 [arXiv:1005.5290] [INSPIRE].ADSGoogle Scholar
  72. [72]
    ETM collaboration, K. Jansen, F. Karbstein, A. Nagy and M. Wagner, \( {\varLambda_{{\overline{M}S}}} \) from the static potential for QCD with n f = 2 dynamical quark flavors, JHEP 01 (2012) 025 [arXiv:1110.6859] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    P. Fritzsch, F. Knechtli, B. Leder, M. Marinkovic, S. Schaefer et al., The strange quark mass and Lambda parameter of two flavor QCD, Nucl. Phys. B 865 (2012) 397 [arXiv:1205.5380] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    S. Aoki, Y. Aoki, C. Bernard, T. Blum, G. Colangelo et al., Review of lattice results concerning low energy particle physics, arXiv:1310.8555 [INSPIRE].
  75. [75]
    HPQCD collaboration, R.J. Dowdall, C.T.H. Davies, R.R. Horgan, C.J. Monahan and J. Shigemitsu, B-Meson Decay Constants from Improved Lattice Nonrelativistic QCD with Physical u, d, s and c Quarks, Phys. Rev. Lett. 110 (2013) 222003 [arXiv:1302.2644] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    C. McNeile, C.T.H. Davies, E. Follana, K. Hornbostel and G.P. Lepage, High-Precision \( {f_{{{B_S}}}} \) and HQET from Relativistic Lattice QCD, Phys. Rev. D 85 (2012) 031503 [arXiv:1110.4510] [INSPIRE].ADSGoogle Scholar
  77. [77]
    H. Na, C.J. Monahan, C.T.H. Davies, R. Horgan, G.P. Lepage et al., The B and B s Meson Decay Constants from Lattice QCD, Phys. Rev. D 86 (2012) 034506 [arXiv:1202.4914] [INSPIRE].ADSGoogle Scholar
  78. [78]
    Fermilab Lattice and MILC collaboration, A. Bazavov et al., B- and D-meson decay constants from three-flavor lattice QCD, Phys. Rev. D 85 (2012) 114506 [arXiv:1112.3051] [INSPIRE].ADSGoogle Scholar
  79. [79]
    F. Bernardoni, B. Blossier, J. Bulava, M. Della Morte, P. Fritzsch et al., B-physics from HQET in two-flavour lattice QCD, PoS(LATTICE 2012)273 [arXiv:1210.7932] [INSPIRE].
  80. [80]
    HPQCD collaboration, A.J. Lee et al., Mass of the b quark from lattice NRQCD and lattice perturbation theory, Phys. Rev. D 87 (2013) 074018 [arXiv:1302.3739] [INSPIRE].ADSGoogle Scholar
  81. [81]
    C. McNeile, C.T.H. Davies, E. Follana, K. Hornbostel and G.P. Lepage, High-Precision c and b Masses and QCD Coupling from Current-Current Correlators in Lattice and Continuum QCD, Phys. Rev. D 82 (2010) 034512 [arXiv:1004.4285] [INSPIRE].ADSGoogle Scholar
  82. [82]
    HPQCD collaboration, E. Gamiz, C.T.H. Davies, G.P. Lepage, J. Shigemitsu and M. Wingate, Neutral B Meson Mixing in Unquenched Lattice QCD, Phys. Rev. D 80 (2009) 014503 [arXiv:0902.1815] [INSPIRE].ADSGoogle Scholar
  83. [83]
    A. Bazavov, C. Bernard, C.M. Bouchard, C. DeTar, M. Di Pierro et al., Neutral B-meson mixing from three-flavor lattice QCD: Determination of the SU(3)-breaking ratio ξ, Phys. Rev. D 86 (2012) 034503 [arXiv:1205.7013] [INSPIRE].ADSGoogle Scholar
  84. [84]
    N. Carrasco et al., A N f = 2 + 1 + 1 “twisteddetermination of the b quark mass, PoS(LATTICE 2013)313.
  85. [85]
    M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi et al., Next-to-leading order QCD corrections to Delta F = 2 effective Hamiltonians, Nucl. Phys. B 523 (1998) 501 [hep-ph/9711402] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    V. Giménez, Two loop calculation of the anomalous dimension of the axial current with static heavy quarks, Nucl. Phys. B 375 (1992) 582 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J. Reyes Gamez, Calculo de elementos de matriz debiles para hadrones B con la HQET en el reticulo, Ph.D. thesis, Universitat de Valencia (2001).Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • The ETM collaboration
  • N. Carrasco
    • 1
  • M. Ciuchini
    • 2
  • P. Dimopoulos
    • 3
    • 4
    Email author
  • R. Frezzotti
    • 4
    • 5
  • V. Giménez
    • 1
  • G. Herdoiza
    • 6
  • V. Lubicz
    • 7
    • 2
  • C. Michael
    • 8
  • E. Picca
    • 7
  • G. C. Rossi
    • 4
    • 5
  • F. Sanfilippo
    • 9
  • A. Shindler
    • 10
  • L. Silvestrini
    • 11
  • S. Simula
    • 2
  • C. Tarantino
    • 7
    • 2
  1. 1.Departament de Física Teòrica and IFICUniv. de València-CSICValènciaSpain
  2. 2.INFN, Sezione di Roma Tre, c/o Dipartimento di FisicaUniversità Roma TreRomeItaly
  3. 3.Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Compendio del ViminaleRomeItaly
  4. 4.Dipartimento di FisicaUniversità di Roma “Tor Vergata”RomeItaly
  5. 5.INFN, Sezione di “Tor Vergata”, c/o Dipartimento di FisicaUniversità di Roma “Tor Vergata”RomeItaly
  6. 6.PRISMA Cluster of Excellence, Institut für KernphysikJohannes Gutenberg-UniversitätMainzGermany
  7. 7.Dipartimento di FisicaUniversità Roma TreRomeItaly
  8. 8.Theoretical Physics Division, Department of Mathematical SciencesThe University of LiverpoolLiverpoolU.K.
  9. 9.Laboratoire de Physique Théorique (Bât. 210)Université Paris SudOrasay-CedexFrance
  10. 10.CERN, Physics DepartmentGeneva 23Switzerland
  11. 11.INFN, Sezione di Roma, c/o Dipartimento di Fisica, SapienzaUniversità di RomaRomeItaly

Personalised recommendations