Superdescendants of the D1D5 CFT and their dual 3-charge geometries

Open Access
Article

Abstract

We describe how to obtain the gravity duals of semiclassical states in the D1-D5 CFT that are superdescendants of a class of RR ground states. On the gravity side, the configurations we construct are regular and asymptotically reproduce the 3-charge D1-D5-P black hole compactified on S1 × T4. The geometries depend trivially on the T4 directions but non-trivially on the remaining 6D space. In the decoupling limit, they reduce to asymptotically AdS3 × S3 × T4 spaces that are dual to CFT states obtained by acting with (exponentials of) the operators of the superconformal algebra. As explicit examples, we generalise the solution first constructed in arXiv:1306.1745 and discuss another class of states that have a more complicated dual geometry. By using the free orbifold description of the CFT we calculate the average values for momentum and the angular momenta of these configurations. Finally we compare the CFT results with those obtained in the bulk from the asymptotically M1,4 × S1 × T4 region.

Keywords

Black Holes in String Theory AdS-CFT Correspondence 

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    C.G. Callan and J.M. Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys. B 472 (1996) 591 [hep-th/9602043] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    S.D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    S.D. Mathur, Fuzzballs and the information paradox: A Summary and conjectures, arXiv:0810.4525 [INSPIRE].
  7. [7]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black Holes as Effective Geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    B.D. Chowdhury and A. Virmani, Modave Lectures on Fuzzballs and Emission from the D1 − D5 System, arXiv:1001.1444 [INSPIRE].
  9. [9]
    S.D. Mathur, Black Holes and Beyond, Annals Phys. 327 (2012) 2760 [arXiv:1205.0776] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    S.D. Mathur, Black holes and holography, J. Phys. Conf. Ser. 405 (2012) 012005 [arXiv:1207.5431] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    O. Lunin and S.D. Mathur, Metric of the multiply wound rotating string, Nucl. Phys. B 610 (2001) 49 [hep-th/0105136] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    O. Lunin, S.D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?, Nucl. Phys. B 655 (2003) 185 [hep-th/0211292] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1 − D5 system with angular momentum, hep-th/0212210 [INSPIRE].
  15. [15]
    I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP 06 (2007) 056 [arXiv:0704.0690] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Dabholkar, Exact counting of black hole microstates, Phys. Rev. Lett. 94 (2005) 241301 [hep-th/0409148] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    A. Sen, Two Charge System Revisited: Small Black Holes or Horizonless Solutions?, JHEP 05 (2010) 097 [arXiv:0908.3402] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    O. Lunin, Adding momentum to D-1 - D-5 system, JHEP 04 (2004) 054 [hep-th/0404006] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys. B 710 (2005) 425 [hep-th/0406103] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    S. Giusto and S.D. Mathur, Geometry of D1-D5-P bound states, Nucl. Phys. B 729 (2005) 203 [hep-th/0409067] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    I. Bena, C.-W. Wang and N.P. Warner, The Foaming three-charge black hole, Phys. Rev. D 75 (2007) 124026 [hep-th/0604110] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11 (2006) 042 [hep-th/0608217] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    J. Ford, S. Giusto and A. Saxena, A Class of BPS time-dependent 3-charge microstates from spectral flow, Nucl. Phys. B 790 (2008) 258 [hep-th/0612227] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    O. Lunin, S.D. Mathur and D. Turton, Adding momentum to supersymmetric geometries, Nucl. Phys. B 868 (2013) 383 [arXiv:1208.1770] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    G. Gibbons and N. Warner, Global Structure of Five-dimensional BPS Fuzzballs, Class. Quantum Grav. 31 (2014) 025016 [arXiv:1305.0957] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Giusto, L. Martucci, M. Petrini and R. Russo, 6D microstate geometries from 10D structures, Nucl. Phys. B 876 (2013) 509 [arXiv:1306.1745] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    S.D. Mathur and D. Turton, Microstates at the boundary of AdS, JHEP 05 (2012) 014 [arXiv:1112.6413] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    I. Bena, J. de Boer, M. Shigemori and N.P. Warner, Double, Double Supertube Bubble, JHEP 10 (2011) 116 [arXiv:1107.2650] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    I. Bena, S. Giusto, M. Shigemori and N.P. Warner, Supersymmetric Solutions in Six Dimensions: A Linear Structure, JHEP 03 (2012) 084 [arXiv:1110.2781] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    B.E. Niehoff, O. Vasilakis and N.P. Warner, Multi-Superthreads and Supersheets, JHEP 04 (2013) 046 [arXiv:1203.1348] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    O. Vasilakis, Corrugated Multi-Supersheets, JHEP 07 (2013) 008 [arXiv:1302.1241] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    S. Giusto, J.F. Morales and R. Russo, D1D5 microstate geometries from string amplitudes, JHEP 03 (2010) 130 [arXiv:0912.2270] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    W. Black, R. Russo and D. Turton, The Supergravity fields for a D-brane with a travelling wave from string amplitudes, Phys. Lett. B 694 (2010) 246 [arXiv:1007.2856] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    S. Giusto, R. Russo and D. Turton, New D1-D5-P geometries from string amplitudes, JHEP 11 (2011) 062 [arXiv:1108.6331] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    S. Giusto and R. Russo, Perturbative superstrata, Nucl. Phys. B 869 (2013) 164 [arXiv:1211.1957] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    I. Bena, N. Bobev, S. Giusto, C. Ruef and N.P. Warner, An Infinite-Dimensional Family of Black-Hole Microstate Geometries, JHEP 03 (2011) 022 [Erratum ibid. 1104 (2011) 059] [arXiv:1006.3497] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    B.E. Niehoff and N.P. Warner, Doubly-Fluctuating BPS Solutions in Six Dimensions, JHEP 10 (2013) 137 [arXiv:1303.5449] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructinghairfor the three charge hole, Nucl. Phys. B 680 (2004) 415 [hep-th/0311092] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    S.D. Mathur and D. Turton, Momentum-carrying waves on D1 − D5 microstate geometries, Nucl. Phys. B 862 (2012) 764 [arXiv:1202.6421] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    M. Shigemori, Perturbative 3-charge microstate geometries in six dimensions, JHEP 10 (2013) 169 [arXiv:1307.3115] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    C.G. Callan, J.M. Maldacena and A.W. Peet, Extremal black holes as fundamental strings, Nucl. Phys. B 475 (1996) 645 [hep-th/9510134] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    A. Dabholkar, J.P. Gauntlett, J.A. Harvey and D. Waldram, Strings as solitons and black holes as strings, Nucl. Phys. B 474 (1996) 85 [hep-th/9511053] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    J.M. Maldacena and L. Maoz, Desingularization by rotation, JHEP 12 (2002) 055 [hep-th/0012025] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S.F. Ross, Supersymmetric conical defects: Towards a string theoretic description of black hole formation, Phys. Rev. D 64 (2001) 064011 [hep-th/0011217] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S.G. Avery, Using the D1D5 CFT to Understand Black Holes, arXiv:1012.0072 [INSPIRE].
  49. [49]
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Deforming the D1D5 CFT away from the orbifold point, JHEP 06 (2010) 031 [arXiv:1002.3132] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Excitations in the deformed D1D5 CFT, JHEP 06 (2010) 032 [arXiv:1003.2746] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    A. Schwimmer and N. Seiberg, Comments on the N = 2, N = 3, N = 4 Superconformal Algebras in Two-Dimensions, Phys. Lett. B 184 (1987) 191 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    I. Kanitscheider, K. Skenderis and M. Taylor, Holographic anatomy of fuzzballs, JHEP 04 (2007) 023 [hep-th/0611171] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    D. Garfinkle and T. Vachaspati, Cosmic string traveling waves, Phys. Rev. D 42 (1990) 1960 [INSPIRE].ADSGoogle Scholar
  54. [54]
    R.C. Myers and M. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Dipartimento di Fisica ed Astronomia “Galileo Galilei”Università di PadovaPadovaItaly
  2. 2.I.N.F.N. Sezione di PadovaPadovaItaly
  3. 3.Centre for Research in String TheorySchool of Physics and Astronomy, Queen Mary University of LondonLondonUnited Kingdom
  4. 4.Laboratoire de Physique Théorique de L’Ecole Normale SupérieureParis cedexFrance

Personalised recommendations