Advertisement

Double seesaw mechanism and lepton mixing

  • W. GrimusEmail author
  • L. Lavoura
Open Access
Article

Abstract

We present a general framework for models in which the lepton mixing matrix is the product of the maximal mixing matrix U ω times a matrix constrained by a well-defined \( {{\mathbb{Z}}_2} \) symmetry. Our framework relies on neither supersymmetry nor non-renormalizable Lagrangians nor higher dimensions; it relies instead on the double seesaw mechanism and on the soft breaking of symmetries. The framework may be used to construct models for virtually all the lepton mixing matrices of the type mentioned above which have been proposed in the literature.

Keywords

Neutrino Physics Discrete and Finite Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Forero, M. Tórtola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  5. [5]
    G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C.H. Albright and W. Rodejohann, Comparing trimaximal mixing and its variants with deviations from tri-bimaximal mixing, Eur. Phys. J. C 62 (2009) 599 [arXiv:0812.0436] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.H. Albright, A. Dueck and W. Rodejohann, Possible alternatives to tri-bimaximal mixing, Eur. Phys. J. C 70 (2010) 1099 [arXiv:1004.2798] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Lam, Determining horizontal symmetry from neutrino mixing, Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C. Lam, The unique horizontal symmetry of leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185] [INSPIRE].ADSGoogle Scholar
  12. [12]
    C. Lam, A bottom-up analysis of horizontal symmetry, arXiv:0907.2206 [INSPIRE].
  13. [13]
    S.-F. Ge, D.A. Dicus and W.W. Repko, \( {{\mathbb{Z}}_2} \) symmetry prediction for the leptonic Dirac CP phase, Phys. Lett. B 702 (2011) 220 [arXiv:1104.0602] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    H.-J. He and F.-R. Yin, Common origin of μτ and CP breaking in neutrino seesaw, baryon asymmetry and hidden flavor symmetry, Phys. Rev. D 84 (2011) 033009 [arXiv:1104.2654] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R.d.A. Toorop, F. Feruglio and C. Hagedorn, Discrete flavour symmetries in light of T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S.-F. Ge, D.A. Dicus and W.W. Repko, Residual symmetries for neutrino mixing with a large θ 13 and nearly maximal δD , Phys. Rev. Lett. 108 (2012) 041801 [arXiv:1108.0964] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite modular groups and lepton mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    H.-J. He and X.-J. Xu, Octahedral symmetry with geometrical breaking: new prediction for neutrino mixing angle θ 13 and CP-violation, Phys. Rev. D 86 (2012) 111301 [arXiv:1203.2908] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C. Lam, Finite symmetry of leptonic mass matrices, Phys. Rev. D 87 (2013) 013001 [arXiv:1208.5527] [INSPIRE].ADSGoogle Scholar
  21. [21]
    D. Hernandez and A.Y. Smirnov, Discrete symmetries and model-independent patterns of lepton mixing, Phys. Rev. D 87 (2013) 053005 [arXiv:1212.2149] [INSPIRE].ADSGoogle Scholar
  22. [22]
    B. Hu, Neutrino mixing and discrete symmetries, Phys. Rev. D 87 (2013) 033002 [arXiv:1212.2819] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Holthausen, K.S. Lim and M. Lindner, Lepton mixing patterns from a scan of finite discrete groups, Phys. Lett. B 721 (2013) 61 [arXiv:1212.2411] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Trimaximal mixing with predicted θ 13 from a new type of constrained sequential dominance, Nucl. Phys. B 856 (2012) 328 [arXiv:1108.4278] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    W. Rodejohann and H. Zhang, Simple two parameter description of lepton mixing, Phys. Rev. D 86 (2012) 093008 [arXiv:1207.1225] [INSPIRE].ADSGoogle Scholar
  26. [26]
    E. Ma, Self-organizing neutrino mixing matrix, Phys. Rev. D 86 (2012) 117301 [arXiv:1209.3374] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C. Luhn, Trimaximal TM 1 neutrino mixing in S 4 with spontaneous CP-violation, Nucl. Phys. B 875 (2013) 80 [arXiv:1306.2358] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    I. de Medeiros Varzielas and L. Lavoura, Flavour models for T M 1 lepton mixing, J. Phys. G 40 (2013) 085002 [arXiv:1212.3247] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Mohapatra and J. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Barr, A different seesaw formula for neutrino masses, Phys. Rev. Lett. 92 (2004) 101601 [hep-ph/0309152] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. Fukuyama, A. Ilakovac, T. Kikuchi and K. Matsuda, Neutrino oscillations in a supersymmetric SO(10) model with Type-III see-saw mechanism, JHEP 06 (2005) 016 [hep-ph/0503114] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P.B. Dev and A. Pilaftsis, Minimal radiative neutrino mass mechanism for inverse seesaw models, Phys. Rev. D 86 (2012) 113001 [arXiv:1209.4051] [INSPIRE].ADSGoogle Scholar
  34. [34]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in Proceedings of the workshop on unified theory and baryon number in the universe, Tsukuba Japan (1979), O. Sawata and A. Sugamoto eds., KEK report 79-18, Tsukuba Japan (1979).Google Scholar
  36. [36]
    S.L. Glashow, The future of elementary particle physics, in Quarks and leptons, proceedings of the advanced study institute, Cargèse Corsica (1979), M. Lévy et al. eds., Plenum Press, New York U.S.A. (1980).Google Scholar
  37. [37]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and F. van Nieuwenhuizen eds., North Holland, Amsterdam The Netherlands (1979).Google Scholar
  38. [38]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    W. Grimus and L. Lavoura, A model realizing the Harrison-Perkins-Scott lepton mixing matrix, JHEP 01 (2006) 018 [hep-ph/0509239] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    W. Grimus and L. Lavoura, Tri-bimaximal lepton mixing from symmetry only, JHEP 04 (2009) 013 [arXiv:0811.4766] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    W. Grimus, Discrete symmetries, roots of unity and lepton mixing, J. Phys. G 40 (2013) 075008 [arXiv:1301.0495] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    W. Grimus and L. Lavoura, A model for trimaximal lepton mixing, JHEP 09 (2008) 106 [arXiv:0809.0226] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    F. Feruglio, C. Hagedorn and R. Ziegler, Lepton mixing parameters from discrete and CP symmetries, JHEP 07 (2013) 027 [arXiv:1211.5560] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G.-J. Ding, S.F. King, C. Luhn and A.J. Stuart, Spontaneous CP-violation from vacuum alignment in S 4 models of leptons, JHEP 05 (2013) 084 [arXiv:1303.6180] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    F. Feruglio, C. Hagedorn and R. Ziegler, A realistic pattern of lepton mixing and masses from S 4 and CP, Eur. Phys. J. C 74 (2014) 2753 [arXiv:1303.7178] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G.-J. Ding, S.F. King and A.J. Stuart, Generalised CP and A 4 family symmetry, JHEP 12 (2013) 006 [arXiv:1307.4212] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Bovier, M. Lüling and D. Wyler, Finite subgroups of SU(3), J. Math. Phys. 22 (1981) 1543 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    J. Escobar and C. Luhn, The flavor group Δ(6n 2), J. Math. Phys. 50 (2009) 013524 [arXiv:0809.0639] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    W. Grimus and P.O. Ludl, Finite flavour groups of fermions, J. Phys. A 45 (2012) 233001 [arXiv:1110.6376] [INSPIRE].ADSGoogle Scholar
  50. [50]
    P. Ferreira, W. Grimus, L. Lavoura and P. Ludl, Maximal CP-violation in lepton mixing from a model with Δ(27) flavour symmetry, JHEP 09 (2012) 128 [arXiv:1206.7072] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are there real Goldstone bosons associated with broken lepton number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaWienAustria
  2. 2.Instituto Superior Técnico, CFTPUniversidade de LisboaLisboaPortugal

Personalised recommendations