Advertisement

Maxwell-like Lagrangians for higher spins

  • Andrea Campoleoni
  • Dario FranciaEmail author
Article

Abstract

We show how implementing invariance under divergence-free gauge transformations leads to a remarkably simple Lagrangian description of massless bosons of any spin. Our construction covers both flat and (A)dS backgrounds and extends to tensors of arbitrary mixed-symmetry type. Irreducible and traceless fields produce single-particle actions, while whenever trace constraints can be dispensed with the resulting Lagrangians display the same reducible, multi-particle spectra as those emerging from the tensionless limit of free open-string field theory. For all explored options the corresponding kinetic operators take essentially the same form as in the spin-one, Maxwell case.

Keywords

Gauge Symmetry Field Theories in Higher Dimensions Space-Time Symmetries 

References

  1. [1]
    D. Francia, Low-spin models for higher-spin Lagrangians, Prog. Theor. Phys. Suppl. 188 (2011) 94 [arXiv:1103.0683] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  2. [2]
    M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    D. Sorokin, Introduction to the classical theory of higher spins, AIP Conf. Proc. 767 (2005) 172 [hep-th/0405069] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    N. Bouatta, G. Compere and A. Sagnotti, An introduction to free higher-spin fields, hep-th/0409068 [INSPIRE].
  5. [5]
    A. Sagnotti, E. Sezgin and P. Sundell, On higher spins with a strong Sp(2, \( \mathbb{R} \)) condition, hep-th/0501156 [INSPIRE].
  6. [6]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].
  7. [7]
    D. Francia and A. Sagnotti, Higher-spin geometry and string theory, J. Phys. Conf. Ser. 33 (2006) 57 [hep-th/0601199] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Campoleoni, Higher spins in D = 2 + 1, arXiv:1110.5841 [INSPIRE].
  9. [9]
    A. Sagnotti, Notes on strings and higher spins, arXiv:1112.4285 [INSPIRE].
  10. [10]
    M. Fierz, Force-free particles with any spin, Helv. Phys. Acta 12 (1939) 3 [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].ADSGoogle Scholar
  12. [12]
    E. Skvortsov and M. Vasiliev, Transverse invariant higher spin fields, Phys. Lett. B 664 (2008) 301 [hep-th/0701278] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    J. Labastida, Massless particles in arbitrary representations of the Lorentz group, Nucl. Phys. B 322 (1989) 185 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained higher spins of mixed symmetry. I. Bose fields, Nucl. Phys. B 815 (2009) 289 [arXiv:0810.4350] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained higher spins of mixed symmetry. II. Fermi fields, Nucl. Phys. B 828 (2010) 405 [arXiv:0904.4447] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A. Campoleoni, Lagrangian formulations for Bose and Fermi higher-spin fields of mixed symmetry, arXiv:0905.1472 [INSPIRE].
  17. [17]
    A. Campoleoni, Metric-like Lagrangian formulations for higher-spin fields of mixed symmetry, Riv. Nuovo Cim. 33 (2010) 123 [arXiv:0910.3155] [INSPIRE].Google Scholar
  18. [18]
    T. Curtright, Generalized gauge fields, Phys. Lett. B 165 (1985) 304 [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    C. Aulakh, I. Koh and S. Ouvry, Higher spin fields with mixed symmetry, Phys. Lett. B 173 (1986) 284 [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    W. Siegel and B. Zwiebach, Gauge string fields from the light cone, Nucl. Phys. B 282 (1987) 125 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    C. Burdik, A. Pashnev and M. Tsulaia, On the mixed symmetry irreducible representations of the Poincaré group in the BRST approach, Mod. Phys. Lett. A 16 (2001) 731 [hep-th/0101201] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    K. Alkalaev, M. Grigoriev and I.Y. Tipunin, Massless Poincaré modules and gauge invariant equations, Nucl. Phys. B 823 (2009) 509 [arXiv:0811.3999] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    D. Cherney, E. Latini and A. Waldron, Generalized Einstein operator generating functions, Phys. Lett. B 682 (2010) 472 [arXiv:0909.4578] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    I. Buchbinder and A. Reshetnyak, General Lagrangian formulation for higher spin fields with arbitrary index symmetry. I. Bosonic fields, Nucl. Phys. B 862 (2012) 270 [arXiv:1110.5044] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    E. Skvortsov, Frame-like actions for massless mixed-symmetry fields in Minkowski space, Nucl. Phys. B 808 (2009) 569 [arXiv:0807.0903] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    E. Skvortsov and Y. Zinoviev, Frame-like actions for massless mixed-symmetry fields in Minkowski space. Fermions, Nucl. Phys. B 843 (2011) 559 [arXiv:1007.4944] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    K. Alkalaev, FV-type action for AdS 5 mixed-symmetry fields, JHEP 03 (2011) 031 [arXiv:1011.6109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    N. Boulanger, E. Skvortsov and Y. Zinoviev, Gravitational cubic interactions for a simple mixed-symmetry gauge field in AdS and flat backgrounds, J. Phys. A 44 (2011) 415403 [arXiv:1107.1872] [INSPIRE].Google Scholar
  30. [30]
    N. Boulanger and E. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime, JHEP 09 (2011) 063 [arXiv:1107.5028] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    Y. Zinoviev, On massive mixed symmetry tensor fields in Minkowski space and (A)dS, hep-th/0211233 [INSPIRE].
  32. [32]
    P. de Medeiros, Massive gauge invariant field theories on spaces of constant curvature, Class. Quant. Grav. 21 (2004) 2571 [hep-th/0311254] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  33. [33]
    C. Burdik and A. Reshetnyak, On representations of higher spin symmetry algebras for mixed-symmetry HS fields on AdS-spaces. Lagrangian formulation, J. Phys. Conf. Ser. 343 (2012) 012102 [arXiv:1111.5516] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Alkalaev, O. Shaynkman and M. Vasiliev, On the frame-like formulation of mixed symmetry massless fields in (A)dS(d), Nucl. Phys. B 692 (2004) 363 [hep-th/0311164] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    K. Alkalaev, Two column higher spin massless fields in AdS(d), Theor. Math. Phys. 140 (2004) 1253 [hep-th/0311212] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    K. Alkalaev, O. Shaynkman and M. Vasiliev, Lagrangian formulation for free mixed-symmetry bosonic gauge fields in (A)dS(d), JHEP 08 (2005) 069 [hep-th/0501108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    K. Alkalaev, O. Shaynkman and M. Vasiliev, Frame-like formulation for free mixed-symmetry bosonic massless higher-spin fields in AdS(d), hep-th/0601225 [INSPIRE].
  38. [38]
    Y. Zinoviev, Frame-like gauge invariant formulation for mixed symmetry fermionic fields, Nucl. Phys. B 821 (2009) 21 [arXiv:0904.0549] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    Y. Zinoviev, Towards frame-like gauge invariant formulation for massive mixed symmetry bosonic fields. II. General Young tableau with two rows, Nucl. Phys. B 826 (2010) 490 [arXiv:0907.2140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    E. Skvortsov, Gauge fields in (A)dS(d) and connections of its symmetry algebra, J. Phys. A 42 (2009) 385401 [arXiv:0904.2919] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    E. Skvortsov, Gauge fields in (A)dS(d) within the unfolded approach: algebraic aspects, JHEP 01 (2010) 106 [arXiv:0910.3334] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    K.B. Alkalaev and M. Grigoriev, Unified BRST description of AdS gauge fields, Nucl. Phys. B 835 (2010) 197 [arXiv:0910.2690] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    K. Alkalaev and M. Grigoriev, Unified BRST approach to (partially) massless and massive AdS fields of arbitrary symmetry type, Nucl. Phys. B 853 (2011) 663 [arXiv:1105.6111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    M. Grigoriev, Parent formulations, frame-like Lagrangians and generalized auxiliary fields, JHEP 12 (2012) 048 [arXiv:1204.1793] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Metsaev, Massless mixed symmetry bosonic free fields in d-dimensional Anti-de Sitter space-time, Phys. Lett. B 354 (1995) 78 [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    R. Metsaev, Arbitrary spin massless bosonic fields in d-dimensional Anti-de Sitter space, Lect. Notes Phys. 524 (1997) 331 [hep-th/9810231] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    L. Brink, R. Metsaev and M.A. Vasiliev, How massless are massless fields in AdS(d), Nucl. Phys. B 586 (2000) 183 [hep-th/0005136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture: I. General formalism, JHEP 07 (2009) 013 [arXiv:0812.3615] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    N. Boulanger, C. Iazeolla and P. Sundell, Unfolding mixed-symmetry fields in AdS and the BMV conjecture. II. Oscillator realization, JHEP 07 (2009) 014 [arXiv:0812.4438] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    D. Francia and A. Sagnotti, Minimal local Lagrangians for higher-spin geometry, Phys. Lett. B 624 (2005) 93 [hep-th/0507144] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    D. Francia, J. Mourad and A. Sagnotti, Current exchanges and unconstrained higher spins, Nucl. Phys. B 773 (2007) 203 [hep-th/0701163] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    D. Francia, J. Mourad and A. Sagnotti, (A)dS exchanges and partially-massless higher spins, Nucl. Phys. B 804 (2008) 383 [arXiv:0803.3832] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    D. Francia and A. Sagnotti, Free geometric equations for higher spins, Phys. Lett. B 543 (2002) 303 [hep-th/0207002] [INSPIRE].MathSciNetADSGoogle Scholar
  54. [54]
    D. Francia and A. Sagnotti, On the geometry of higher spin gauge fields, Class. Quant. Grav. 20 (2003) S473 [hep-th/0212185] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  55. [55]
    D. Francia, Geometric Lagrangians for massive higher-spin fields, Nucl. Phys. B 796 (2008) 77 [arXiv:0710.5378] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    D. Francia, Geometric massive higher spins and current exchanges, Fortsch. Phys. 56 (2008) 800 [arXiv:0804.2857] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  57. [57]
    B. de Wit and D.Z. Freedman, Systematics of higher spin gauge fields, Phys. Rev. D 21 (1980) 358 [INSPIRE].ADSGoogle Scholar
  58. [58]
    A. Pashnev and M. Tsulaia, Description of the higher massless irreducible integer spins in the BRST approach, Mod. Phys. Lett. A 13 (1998) 1853 [hep-th/9803207] [INSPIRE].MathSciNetADSGoogle Scholar
  59. [59]
    I. Buchbinder, A. Pashnev and M. Tsulaia, Lagrangian formulation of the massless higher integer spin fields in the AdS background, Phys. Lett. B 523 (2001) 338 [hep-th/0109067] [INSPIRE].MathSciNetADSGoogle Scholar
  60. [60]
    K. Hallowell and A. Waldron, Constant curvature algebras and higher spin action generating functions, Nucl. Phys. B 724 (2005) 453 [hep-th/0505255] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    G. Barnich and M. Grigoriev, Parent form for higher spin fields on Anti-de Sitter space, JHEP 08 (2006) 013 [hep-th/0602166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    F. Bastianelli, O. Corradini and E. Latini, Higher spin fields from a worldline perspective, JHEP 02 (2007) 072 [hep-th/0701055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    I. Buchbinder, A. Galajinsky and V. Krykhtin, Quartet unconstrained formulation for massless higher spin fields, Nucl. Phys. B 779 (2007) 155 [hep-th/0702161] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    R. Marnelius, Lagrangian higher spin field theories from the O(N) extended supersymmetric particle, arXiv:0906.2084 [INSPIRE].
  65. [65]
    S. Ouvry and J. Stern, Gauge fields of any spin and symmetry, Phys. Lett. B 177 (1986) 335 [INSPIRE].MathSciNetADSGoogle Scholar
  66. [66]
    A.K. Bengtsson, A unified action for higher spin gauge bosons from covariant string theory, Phys. Lett. B 182 (1986) 321 [INSPIRE].MathSciNetADSGoogle Scholar
  67. [67]
    M. Henneaux and C. Teitelboim, Consistent quantum mechanics of chiral p-formsFirst and second quantized point particles of any spin, in Quantum mechanics of fundamental systems, 2, C. Teitelboim and J. Zanelli eds., Plenum Press, New York U.S.A. (1988) 113.Google Scholar
  68. [68]
    A. Sagnotti and M. Tsulaia, On higher spins and the tensionless limit of string theory, Nucl. Phys. B 682 (2004) 83 [hep-th/0311257] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    D. Francia, String theory triplets and higher-spin curvatures, Phys. Lett. B 690 (2010) 90 [arXiv:1001.5003] [INSPIRE].ADSGoogle Scholar
  70. [70]
    G. Bonelli, On the tensionless limit of bosonic strings, infinite symmetries and higher spins, Nucl. Phys. B 669 (2003) 159 [hep-th/0305155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    A. Fotopoulos and M. Tsulaia, Gauge invariant Lagrangians for free and interacting higher spin fields. A review of the BRST formulation, Int. J. Mod. Phys. A 24 (2009) 1 [arXiv:0805.1346] [INSPIRE].MathSciNetADSGoogle Scholar
  72. [72]
    D.P. Sorokin and M.A. Vasiliev, Reducible higher-spin multiplets in flat and AdS spaces and their geometric frame-like formulation, Nucl. Phys. B 809 (2009) 110 [arXiv:0807.0206] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    A. Einstein, The principle of relativity, Siz. Preuss. Acad. Scis. (1919).Google Scholar
  74. [74]
    J.J. van der Bij, H. van Dam and Y.J. Ng, The exchange of massless spin two particles, Physica 116A (1982) 307.ADSGoogle Scholar
  75. [75]
    W. Buchmüller and N. Dragon, Einstein gravity from restricted coordinate invariance, Phys. Lett. B 207 (1988) 292 [INSPIRE].ADSGoogle Scholar
  76. [76]
    W. Unruh, A unimodular theory of canonical quantum gravity, Phys. Rev. D 40 (1989) 1048 [INSPIRE].MathSciNetADSGoogle Scholar
  77. [77]
    M. Henneaux and C. Teitelboim, The cosmological constant and general covariance, Phys. Lett. B 222 (1989) 195 [INSPIRE].ADSGoogle Scholar
  78. [78]
    E. Alvarez, D. Blas, J. Garriga and E. Verdaguer, Transverse Fierz-Pauli symmetry, Nucl. Phys. B 756 (2006) 148 [hep-th/0606019] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    E. Alvarez, A.F. Faedo and J. Lopez-Villarejo, Ultraviolet behavior of transverse gravity, JHEP 10 (2008) 023 [arXiv:0807.1293] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    E. Alvarez and R. Vidal, Weyl transverse gravity (WTDiff) and the cosmological constant, Phys. Rev. D 81 (2010) 084057 [arXiv:1001.4458] [INSPIRE].ADSGoogle Scholar
  81. [81]
    F. Bastianelli and R. Bonezzi, U(N) spinning particles and higher spin equations on complex manifolds, JHEP 03 (2009) 063 [arXiv:0901.2311] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    F. Bastianelli, R. Bonezzi and C. Iazeolla, Quantum theories of (p,q)-forms, JHEP 08 (2012) 045 [arXiv:1204.5954] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    D. Francia, On the relation between local and geometric Lagrangians for higher spins, J. Phys. Conf. Ser. 222 (2010) 012002 [arXiv:1001.3854] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    P. de Medeiros and C. Hull, Geometric second order field equations for general tensor gauge fields, JHEP 05 (2003) 019 [hep-th/0303036] [INSPIRE].CrossRefGoogle Scholar
  85. [85]
    X. Bekaert and N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D, R): duality and Poincaré lemma, Commun. Math. Phys. 245 (2004) 27 [hep-th/0208058] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  86. [86]
    R. Manvelyan, K. Mkrtchyan, W. Rühl and M. Tovmasyan, On nonlinear higher spin curvature, Phys. Lett. B 699 (2011) 187 [arXiv:1102.0306] [INSPIRE].ADSGoogle Scholar
  87. [87]
    C. Fronsdal, Singletons and massless, integral spin fields on de Sitter space (elementary particles in a curved space. 7., Phys. Rev. D 20 (1979) 848 [INSPIRE].MathSciNetADSGoogle Scholar
  88. [88]
    X. Bekaert and N. Boulanger, The unitary representations of the Poincaré group in any spacetime dimension, hep-th/0611263 [INSPIRE].
  89. [89]
    J. Labastida and T. Morris, Massless mixed symmetry bosonic free fields, Phys. Lett. B 180 (1986) 101 [INSPIRE].MathSciNetADSGoogle Scholar
  90. [90]
    D.M. Gitman and I.V. Tyutin, Quantization of fields with constraints, Springer, Berlin Germany (1990).zbMATHCrossRefGoogle Scholar
  91. [91]
    M. Henneaux, C. Teitelboim and J. Zanelli, Gauge invariance and degree of freedom count, Nucl. Phys. B 332 (1990) 169 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  92. [92]
    A. Higuchi, Symmetric tensor spherical harmonics on the N sphere and their application to the de Sitter group SO(N, 1), J. Math. Phys. 28 (1987) 1553 [Erratum ibid. 43 (2002) 6385] [INSPIRE].
  93. [93]
    R. Metsaev, Lowest eigenvalues of the energy operator for totally (anti)symmetric massless fields of the n-dimensional Anti-de Sitter group, Class. Quant. Grav. 11 (1994) L141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  94. [94]
    A. Fotopoulos and M. Tsulaia, Current exchanges for reducible higher spin modes on AdS, arXiv:1007.0747 [INSPIRE].
  95. [95]
    L. Singh and C. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev. D 9 (1974) 898 [INSPIRE].ADSGoogle Scholar
  96. [96]
    Y. Zinoviev, Frame-like gauge invariant formulation for massive high spin particles, Nucl. Phys. B 808 (2009) 185 [arXiv:0808.1778] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  97. [97]
    Y. Zinoviev, Toward frame-like gauge invariant formulation for massive mixed symmetry bosonic fields, Nucl. Phys. B 812 (2009) 46 [arXiv:0809.3287] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  98. [98]
    A. Fotopoulos and M. Tsulaia, Current exchanges for reducible higher spin multiplets and gauge fixing, JHEP 10 (2009) 050 [arXiv:0907.4061] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    J. Fang and C. Fronsdal, Massless fields with half integral spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].ADSGoogle Scholar
  100. [100]
    R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys. B 759 (2006) 147 [hep-th/0512342] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  101. [101]
    I. Buchbinder, A. Fotopoulos, A.C. Petkou and M. Tsulaia, Constructing the cubic interaction vertex of higher spin gauge fields, Phys. Rev. D 74 (2006) 105018 [hep-th/0609082] [INSPIRE].MathSciNetADSGoogle Scholar
  102. [102]
    A. Fotopoulos and M. Tsulaia, Interacting higher spins and the high energy limit of the bosonic string, Phys. Rev. D 76 (2007) 025014 [arXiv:0705.2939] [INSPIRE].MathSciNetADSGoogle Scholar
  103. [103]
    N. Boulanger, S. Leclercq and P. Sundell, On the uniqueness of minimal coupling in higher-spin gauge theory, JHEP 08 (2008) 056 [arXiv:0805.2764] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  104. [104]
    X. Bekaert, E. Joung and J. Mourad, On higher spin interactions with matter, JHEP 05 (2009) 126 [arXiv:0903.3338] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    R. Manvelyan, K. Mkrtchyan and W. Rühl, General trilinear interaction for arbitrary even higher spin gauge fields, Nucl. Phys. B 836 (2010) 204 [arXiv:1003.2877] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    A. Sagnotti and M. Taronna, String lessons for higher-spin interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  107. [107]
    R. Manvelyan, K. Mkrtchyan and W. Ruehl, A generating function for the cubic interactions of higher spin fields, Phys. Lett. B 696 (2011) 410 [arXiv:1009.1054] [INSPIRE].ADSGoogle Scholar
  108. [108]
    D. Polyakov, A string model for AdS gravity and higher spins, Phys. Rev. D 84 (2011) 126004 [arXiv:1106.1558] [INSPIRE].ADSGoogle Scholar
  109. [109]
    M. Taronna, Higher-spin interactions: four-point functions and beyond, JHEP 04 (2012) 029 [arXiv:1107.5843] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  110. [110]
    M. Vasiliev, Cubic vertices for symmetric higher-spin gauge fields in (A)dS d, Nucl. Phys. B 862 (2012) 341 [arXiv:1108.5921] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  111. [111]
    E. Joung and M. Taronna, Cubic interactions of massless higher spins in (A)dS: metric-like approach, Nucl. Phys. B 861 (2012) 145 [arXiv:1110.5918] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  112. [112]
    E. Joung, L. Lopez and M. Taronna, On the cubic interactions of massive and partially-massless higher spins in (A)dS, JHEP 07 (2012) 041 [arXiv:1203.6578] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    P. Dempster and M. Tsulaia, On the structure of quartic vertices for massless higher spin fields on Minkowski background, Nucl. Phys. B 865 (2012) 353 [arXiv:1203.5597] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  114. [114]
    R. Metsaev, BRST-BV approach to cubic interaction vertices for massive and massless higher-spin fields, Phys. Lett. B 720 (2013) 237 [arXiv:1205.3131] [INSPIRE].ADSGoogle Scholar
  115. [115]
    A. Lichnerowicz, Propagateurs et commutateurs en relativité générale, Publ. Math. IHES 10 (1961) 5.Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutGolmGermany
  2. 2.Centro Studi e Ricerche E. FermiRomaItaly
  3. 3.Scuola Normale Superiore and INFNPisaItaly
  4. 4.Université Libre de BruxellesULB-Campus Plaine CP231BrusselsBelgium

Personalised recommendations