Competing orders in M-theory: superfluids, stripes and metamagnetism

  • Aristomenis Donos
  • Jerome P. Gauntlett
  • Julian Sonner
  • Benjamin Withers


We analyse the infinite class of d = 3 CFTs dual to skew-whiffed AdS4 × SE7 solutions of D = 11 supergravity at finite temperature and charge density and in the presence of a magnetic field. We construct black hole solutions corresponding to the unbroken phase, and at zero temperature some of these become dyonic domain walls of an Einstein-Maxwell-pseudo-scalar theory interpolating between AdS4 in the UV and new families of dyonic \( Ad{S_2}\times {{\mathbb{R}}^2} \) solutions in the IR. The black holes exhibit both diamagnetic and paramagnetic behaviour. We analyse superfluid and striped instabilities and show that for large enough values of the magnetic field the superfluid instability disappears while the striped instability remains. For larger values of the magnetic field there is also a first-order metamagnetic phase transition and at zero temperature these black hole solutions exhibit hyperscaling violation in the IR with dynamical exponent z = 3/2 and θ = −2.


Black Holes in String Theory AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008)065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  2. [2]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008)015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity Dual of Spatially Modulated Phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].ADSGoogle Scholar
  7. [7]
    H. Ooguri and C.-S. Park, Holographic End-Point of Spatially Modulated Phase Transition, Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].ADSGoogle Scholar
  8. [8]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091 [arXiv:1109.3866] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061 [arXiv:1109.0471] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Magnetic and Electric AdS Solutions in String-and M-theory, Class. Quant. Grav. 29 (2012) 194006 [arXiv:1112.4195] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S.K. Domokos and J.A. Harvey, Baryon number-induced Chern-Simons couplings of vector and axial-vector mesons in holographic QCD, Phys. Rev. Lett. 99 (2007) 141602 [arXiv:0704.1604] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    H. Ooguri and C.-S. Park, Spatially Modulated Phase in Holographic quark-gluon Plasma, Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C.B. Bayona, K. Peeters and M. Zamaklar, A Non-homogeneous ground state of the low-temperature Sakai-Sugimoto model, JHEP 06 (2011) 092 [arXiv:1104.2291] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett. 108 (2012)211601 [arXiv:1203.0533] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Donos and J.P. Gauntlett, Black holes dual to helical current phases, Phys. Rev. D 86 (2012)064010 [arXiv:1204.1734] [INSPIRE].ADSGoogle Scholar
  18. [18]
    N. Iizuka et al., Bianchi Attractors: a Classification of Extremal Black Brane Geometries, JHEP 07 (2012) 193 [arXiv:1201.4861] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M. Rozali, D. Smyth, E. Sorkin and J.B. Stang, Holographic Stripes, arXiv:1211.5600 [INSPIRE].
  20. [20]
    G. Lifschytz and M. Lippert, Holographic Magnetic Phase Transition, Phys. Rev. D 80 (2009)066007 [arXiv:0906.3892] [INSPIRE].ADSGoogle Scholar
  21. [21]
    C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi Surfaces and Entanglement Entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Singh, Lifshitz/Schródinger Dp-branes and dynamical exponents, JHEP 07 (2012) 082 [arXiv:1202.6533] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D 85 (2012)106006 [arXiv:1202.5935] [INSPIRE].ADSGoogle Scholar
  28. [28]
    P. Dey and S. Roy, Lifshitz-like space-time from intersecting branes in string/M theory, JHEP 06 (2012) 129 [arXiv:1203.5381] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Duff, B. Nilsson and C. Pope, The criterion for vacuum stability in Kaluza-Klein supergravity, Phys. Lett. B 139 (1984) 154 [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    A. Imaanpur and M. Naghdi, Dual Instantons in Anti-membranes Theory, Phys. Rev. D 83 (2011)085025 [arXiv:1012.2554] [INSPIRE].ADSGoogle Scholar
  32. [32]
    D. Forcella and A. Zaffaroni, Non-supersymmetric CS-matter theories with known AdS duals, Adv. High Energy Phys. 2011 (2011) 393645 [arXiv:1103.0648] [INSPIRE].MathSciNetGoogle Scholar
  33. [33]
    F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009)126008 [arXiv:0901.1160] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  35. [35]
    S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].MathSciNetADSGoogle Scholar
  36. [36]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of Charged Dilaton Black Holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    K. Goldstein et al., Holography of Dyonic Dilaton Black Branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    F. Denef, S.A. Hartnoll and S. Sachdev, Quantum oscillations and black hole ringing, Phys. Rev. D 80 (2009) 126016 [arXiv:0908.1788] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007)066001 [arXiv:0704.1160] [INSPIRE].ADSGoogle Scholar
  40. [40]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  41. [41]
    T. Albash and C.V. Johnson, A Holographic Superconductor in an External Magnetic Field, JHEP 09 (2008) 121 [arXiv:0804.3466] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    K. Maeda, M. Natsuume and T. Okamura, Vortex lattice for a holographic superconductor, Phys. Rev. D 81 (2010) 026002 [arXiv:0910.4475] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S.A. Grigera et al., Disorder-Sensitive Phase Formation Linked to Metamagnetic Quantum Criticality, Science 12 (2004) 1154.ADSCrossRefGoogle Scholar
  44. [44]
    A.J. Millis, A.J. Schofield, G.G. Lonzarich and S.A. Grigera, Metamagnetic Quantum Criticality in Metals, Physical Review Letters 88 (2002) 217204 [cond-mat/0109440].ADSCrossRefGoogle Scholar
  45. [45]
    E. D’Hoker and P. Kraus, Holographic Metamagnetism, Quantum Criticality and Crossover Behavior, JHEP 05 (2010) 083 [arXiv:1003.1302] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  46. [46]
    E. D’Hoker and P. Kraus, Magnetic Brane Solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  47. [47]
    E. D’Hoker and P. Kraus, Charged Magnetic Brane Solutions in AdS 5 and the fate of the third law of thermodynamics, JHEP 03 (2010) 095 [arXiv:0911.4518] [INSPIRE].MathSciNetCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Aristomenis Donos
    • 1
  • Jerome P. Gauntlett
    • 1
  • Julian Sonner
    • 2
  • Benjamin Withers
    • 3
  1. 1.Blackett LaboratoryImperial CollegeLondonU.K
  2. 2.C.T.P., Massachusetts Institute of TechnologyCambridgeU.S.A
  3. 3.Centre for Particle Theory and Department of Mathematical SciencesUniversity of DurhamDurhamU.K

Personalised recommendations