Leptogenesis from a GeV seesaw without mass degeneracy

Article

Abstract

For Leptogenesis based on the type-I seesaw mechanism, we present a systematic calculation of lepton-number violating and purely flavoured asymmetries within nonequilibrium Quantum Field Theory. We show that sterile neutrinos with non-degenerate masses in the GeV range can explain the baryon asymmetry of the Universe via flavoured Leptogenesis. This is possible due to the interplay of thermal and flavour effects. Our approach clarifies the relation between Leptogenesis from the oscillations of sterile neutrinos and the more commonly studied scenarios from decays and inverse decays. We explain why lower mass bounds for non-degenerate sterile neutrinos derived for Leptogenesis from out-of-equilibrium decays do not apply to flavoured Leptogenesis with GeV-scale neutrinos.

Keywords

Cosmology of Theories beyond the SM Thermal Field Theory 

References

  1. [1]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and P.van Nieuwenhuizen eds., North Holland, Amsterdam The Netherlands (1980).Google Scholar
  4. [4]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Blanchet and P. Di Bari, The minimal scenario of leptogenesis, New J. Phys. 14 (2012) 125012 [arXiv:1211.0512] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Sakharov, Violation of CP Invariance, c Asymmetry and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].Google Scholar
  9. [9]
    E.K. Akhmedov, V. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Endoh, T. Morozumi and Z.-h. Xiong, Primordial lepton family asymmetries in seesaw model, Prog. Theor. Phys. 111 (2004) 123 [hep-ph/0308276] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    A. Pilaftsis and T.E. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavor issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Beneke, B. Garbrecht, C. Fidler, M. Herranen and P. Schwaller, Flavoured leptogenesis in the CTP formalism, Nucl. Phys. B 843 (2011) 177 [arXiv:1007.4783] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Blanchet and P. Di Bari, Flavor effects on leptogenesis predictions, JCAP 03 (2007) 018 [hep-ph/0607330] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    W. Buchmüller, P. Di Bari and M. Plümacher, Cosmic microwave background, matter-antimatter asymmetry and neutrino masses, Nucl. Phys. B 643 (2002) 367 [Erratum ibid. B 793 (2008) 362] [hep-ph/0205349] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Di Bari, Seesaw geometry and leptogenesis, Nucl. Phys. B 727 (2005) 318 [hep-ph/0502082] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    G. Engelhard, Y. Grossman, E. Nardi and Y. Nir, The importance of N 2 leptogenesis, Phys. Rev. Lett. 99 (2007) 081802 [hep-ph/0612187] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Antusch, P. Di Bari, D.A. Jones and S.F. King, A fuller flavour treatment of N 2 -dominated leptogenesis, Nucl. Phys. B 856 (2012) 180 [arXiv:1003.5132] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Flanz, E.A. Paschos, U. Sarkar and J. Weiss, Baryogenesis through mixing of heavy Majorana neutrinos, Phys. Lett. B 389 (1996) 693 [hep-ph/9607310] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Pilaftsis, Resonant CP-violation induced by particle mixing in transition amplitudes, Nucl. Phys. B 504 (1997) 61 [hep-ph/9702393] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Pilaftsis and T.E. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D. Gorbunov and M. Shaposhnikov, How to find neutral leptons of the nuMSM?, JHEP 10 (2007) 015 [arXiv:0705.1729] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L. Lello and D. Boyanovsky, Searching for sterile neutrinos from π and K decays, arXiv:1208.5559 [INSPIRE].
  28. [28]
    T. Asaka, S Eijima and A. Watanabe, Heavy neutrino search in accelerator-based experiments, arXiv:1212.1062 [INSPIRE].
  29. [29]
    O. Ruchayskiy and A. Ivashko, Experimental bounds on sterile neutrino mixing angles, JHEP 06 (2012) 100 [arXiv:1112.3319] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S.N. Gninenko, D.S. Gorbunov and M.E. Shaposhnikov, Search for GeV-scale sterile neutrinos responsible for active neutrino oscillations and baryon asymmetry of the Universe, Adv. High Energy Phys. 2012 (2012) 718259 [arXiv:1301.5516] [INSPIRE].Google Scholar
  31. [31]
    T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Shaposhnikov, The νMSM, leptonic asymmetries and properties of singlet fermions, JHEP 08 (2008) 008 [arXiv:0804.4542] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    L. Canetti and M. Shaposhnikov, Baryon asymmetry of the universe in the νMSM, JCAP 09 (2010) 001 [arXiv:1006.0133] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    L. Canetti, M. Drewes and M. Shaposhnikov, Sterile neutrinos as the origin of dark and baryonic matter, Phys. Rev. Lett. 110 (2013) 061801 [arXiv:1204.3902] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark matter, baryogenesis and neutrino oscillations from right handed neutrinos, arXiv:1208.4607 [INSPIRE].
  36. [36]
    L. Canetti, M. Drewes and M. Shaposhnikov, Matter and antimatter in the universe, New J. Phys. 14 (2012) 095012 [arXiv:1204.4186] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    B. Garbrecht, Leptogenesis: the other cuts, Nucl. Phys. B 847 (2011) 350 [arXiv:1011.3122] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    B. Garbrecht, Leptogenesis from additional Higgs doublets, Phys. Rev. D 85 (2012) 123509 [arXiv:1201.5126] [INSPIRE].ADSGoogle Scholar
  39. [39]
    B. Garbrecht and M. Herranen, Effective theory of resonant leptogenesis in the closed-time-path approach, Nucl. Phys. B 861 (2012) 17 [arXiv:1112.5954] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Garny, A. Kartavtsev and A. Hohenegger, Leptogenesis from first principles in the resonant regime, Annals Phys. 328 (2013) 26 [arXiv:1112.6428] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    W. Buchmüller and S. Fredenhagen, Quantum mechanics of baryogenesis, Phys. Lett. B 483 (2000) 217 [hep-ph/0004145] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. De Simone and A. Riotto, Quantum Boltzmann equations and leptogenesis, JCAP 08 (2007) 002 [hep-ph/0703175] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: vertex contribution to the CP-violating parameter, Phys. Rev. D 80 (2009) 125027 [arXiv:0909.1559] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: self-energy contribution to the CP-violating parameter, Phys. Rev. D 81 (2010) 085027 [arXiv:0911.4122] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Leptogenesis from quantum interference in a thermal bath, Phys. Rev. Lett. 104 (2010) 121102 [arXiv:1001.3856] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Garny, A. Hohenegger and A. Kartavtsev, Medium corrections to the CP-violating parameter in leptogenesis, Phys. Rev. D 81 (2010) 085028 [arXiv:1002.0331] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Beneke, B. Garbrecht, M. Herranen and P. Schwaller, Finite number density corrections to leptogenesis, Nucl. Phys. B 838 (2010) 1 [arXiv:1002.1326] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Garny, A. Hohenegger and A. Kartavtsev, Quantum corrections to leptogenesis from the gradient expansion, arXiv:1005.5385 [INSPIRE].
  49. [49]
    A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Quantum leptogenesis I, Annals Phys. 326 (2011) 1998 [arXiv:1012.5821] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  50. [50]
    E. Calzetta and B. Hu, Nonequilibrium quantum fields: closed time path effective action, Wigner function and Boltzmann equation, Phys. Rev. D 37 (1988) 2878 [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to order h-bar and electroweak baryogenesis. Part 1, Annals Phys. 314 (2004) 208 [hep-ph/0312110] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to order h-bar and electroweak baryogenesis. Part II, Annals Phys. 314 (2004) 267 [hep-ph/0406140] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  53. [53]
    V. Cirigliano, C. Lee, M.J. Ramsey-Musolf and S. Tulin, Flavored quantum Boltzmann equations, Phys. Rev. D 81 (2010) 103503 [arXiv:0912.3523] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Drewes, On the role of quasiparticles and thermal masses in nonequilibrium processes in a plasma, arXiv:1012.5380 [INSPIRE].
  55. [55]
    M. Herranen, K. Kainulainen and P.M. Rahkila, Coherent quantum Boltzmann equations from cQPA, JHEP 12 (2010) 072 [arXiv:1006.1929] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    V. Cirigliano, C. Lee and S. Tulin, Resonant flavor oscillations in electroweak baryogenesis, Phys. Rev. D 84 (2011) 056006 [arXiv:1106.0747] [INSPIRE].ADSGoogle Scholar
  57. [57]
    M. Herranen, K. Kainulainen and P.M. Rahkila, Flavour-coherent propagators and Feynman rules: covariant cQPA formulation, JHEP 02 (2012) 080 [arXiv:1108.2371] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Fidler, M. Herranen, K. Kainulainen and P.M. Rahkila, Flavoured quantum Boltzmann equations from cQPA, JHEP 02 (2012) 065 [arXiv:1108.2309] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    B. Garbrecht and M. Garny, Finite width in out-of-equilibrium propagators and kinetic theory, Annals Phys. 327 (2012) 914 [arXiv:1108.3688] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  60. [60]
    S. Tulin, H.-B. Yu and K.M. Zurek, Oscillating asymmetric dark matter, JCAP 05 (2012) 013 [arXiv:1202.0283] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Drewes, S. Mendizabal and C. Weniger, The Boltzmann equation from quantum field theory, Phys. Lett. B 718 (2013) 1119 [arXiv:1202.1301] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    A. Dolgov, Neutrinos in the early universe, Sov. J. Nucl. Phys. 33 (1981) 700 [Yad. Fiz. 33 (1981) 1309] [INSPIRE].Google Scholar
  63. [63]
    R. Barbieri and A. Dolgov, Neutrino oscillations in the early universe, Nucl. Phys. B 349 (1991) 743 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    K. Enqvist, K. Kainulainen and J. Maalampi, Refraction and oscillations of neutrinos in the early universe, Nucl. Phys. B 349 (1991) 754 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    K. Enqvist, K. Kainulainen and M.J. Thomson, Stringent cosmological bounds on inert neutrino mixing, Nucl. Phys. B 373 (1992) 498 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. Sigl and G. Raffelt, General kinetic description of relativistic mixed neutrinos, Nucl. Phys. B 406 (1993) 423 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    A. Pilaftsis, Resonant τ -leptogenesis with observable lepton number violation, Phys. Rev. Lett. 95 (2005) 081602 [hep-ph/0408103] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    T. Asaka and S. Blanchet, Leptogenesis with an almost conserved lepton number, Phys. Rev. D 78 (2008) 123527 [arXiv:0810.3015] [INSPIRE].ADSGoogle Scholar
  69. [69]
    S. Blanchet, T. Hambye and F.-X. Josse-Michaux, Reconciling leptogenesis with observable mueγ rates, JHEP 04 (2010) 023 [arXiv:0912.3153] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Racker, M. Pena and N. Rius, Leptogenesis with small violation of B-L, JCAP 07 (2012) 030 [arXiv:1205.1948] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the hot Big Bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A. Anisimov, D. Besak and D. Bödeker, Thermal production of relativistic Majorana neutrinos: strong enhancement by multiple soft scattering, JCAP 03 (2011) 042 [arXiv:1012.3784] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    D. Besak and D. Bödeker, Thermal production of ultrarelativistic right-handed neutrinos: complete leading-order results, JCAP 03 (2012) 029 [arXiv:1202.1288] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  75. [75]
    L. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965) 1018] [INSPIRE].Google Scholar
  76. [76]
    J. Casas and A. Ibarra, Oscillating neutrinos and muone,γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  78. [78]
    T. Asaka, S. Eijima and H. Ishida, Mixing of active and sterile neutrinos, JHEP 04 (2011) 011 [arXiv:1101.1382] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    O. Ruchayskiy and A. Ivashko, Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis, JCAP 10 (2012) 014 [arXiv:1202.2841] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    O. Ruchayskiy and A. Ivashko, Experimental bounds on sterile neutrino mixing angles, JHEP 06 (2012) 100 [arXiv:1112.3319] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    G. Branco, W. Grimus and L. Lavoura, The seesaw mechanism in the presence of a conserved lepton number, Nucl. Phys. B 312 (1989) 492 [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    M. Gonzalez-Garcia and J. Valle, Fast decaying neutrinos and observable flavor violation in a new class of majoron models, Phys. Lett. B 216 (1989) 360 [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M. Shaposhnikov, A possible symmetry of the νMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  84. [84]
    A. Ibarra, E. Molinaro and S. Petcov, Low energy signatures of the TeV scale see-saw mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institut für Theoretische Teilchenphysik und KosmologieRWTH Aachen UniversityAachenGermany

Personalised recommendations