Advertisement

The SU(3)-invariant sector of new maximal supergravity

  • A. BorgheseEmail author
  • G. Dibitetto
  • A. Guarino
  • D. Roest
  • O. Varelad
Article

Abstract

We investigate the SU(3)-invariant sector of the one-parameter family of SO(8) gauged maximal supergravities that has been recently discovered. To this end, we construct the \(\mathcal{N}=2\) truncation of this theory and analyse its full vacuum structure. The number of critical point is doubled and includes new \(\mathcal{N}=0\) and \(\mathcal{N}=1\) branches. We numerically exhibit the parameter dependence of the location and cosmological constant of all extrema. Moreover, we provide their analytic expressions for cases of special interest. Finally, while the mass spectra are found to be parameter independent in most cases, we show that the novel non-supersymmetric branch with SU(3) invariance provides the first counterexample to this.

Keywords

Extended Supersymmetry AdS-CFT Correspondence Supergravity Models Superstring Vacua 

References

  1. [1]
    B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].CrossRefGoogle Scholar
  2. [2]
    E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    B. de Wit and H. Nicolai, N = 8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    B. de Wit and H. Nicolai, The Consistency of the S 7 Truncation in D = 11 Supergravity, Nucl. Phys. B 281 (1987) 211 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    H. Nicolai and K. Pilch, Consistent Truncation of D = 11 Supergravity on AdS 4× S 7, JHEP 03 (2012) 099 [arXiv:1112.6131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J. Bagger and N. Lambert, Modeling Multiple M2s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    T. Fischbacher, Fourteen new stationary points in the scalar potential of SO(8)-gauged N = 8, D = 4 supergravity, JHEP 09 (2010) 068[arXiv:0912.1636] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Fischbacher, The Encyclopedic Reference of Critical Points for SO(8)-Gauged N = 8 Supergravity. Part 1: cosmological Constants in the Range − Λ/g 2 ∈ [6 : 14.7), arXiv:1109.1424 [INSPIRE].
  11. [11]
    N. Warner, Some properties of the scalar potential in gauged supergravity theories, Nucl. Phys. B 231 (1984) 250 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    N. Warner, Some new extrema of the scalar potential of gauged N = 8 supergravity, Phys. Lett. B 128 (1983) 169 [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Supergravity Instabilities of Non-Supersymmetric Quantum Critical Points, Class. Quant. Grav. 27 (2010) 235013 [arXiv:1006.2546] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    T. Fischbacher, K. Pilch and N.P. Warner, New Supersymmetric and Stable, Non-Supersymmetric Phases in Supergravity and Holographic Field Theory, arXiv:1010.4910 [INSPIRE].
  15. [15]
    P.G. Freund and M.A. Rubin, Dynamics of Dimensional Reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    F. Englert, Spontaneous Compactification of Eleven-Dimensional Supergravity, Phys. Lett. B 119 (1982) 339 [INSPIRE].ADSGoogle Scholar
  17. [17]
    B. de Wit and H. Nicolai, A new SO(7) invariant solution of D = 11 supergravity, Phys. Lett. B 148 (1984) 60 [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Pope and N. Warner, An SU(4) invariant compactification of D = 11 supergravity on a stretched seven sphere, Phys. Lett. B 150 (1985) 352 [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    R. Corrado, K. Pilch and N.P. Warner, An N = 2 supersymmetric membrane flow, Nucl. Phys. B 629 (2002) 74 [hep-th/0107220] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    C.-h. Ahn and K. Woo, Supersymmetric domain wall and RG flow from 4-dimensional gauged N = 8 supergravity, Nucl. Phys. B 599 (2001) 83 [hep-th/0011121] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons Theories and AdS 4 /CF T 3 Correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    I. Klebanov, T. Klose and A. Murugan, AdS 4 /CF T 3 Squashed, Stretched and Warped, JHEP 03 (2009) 140 [arXiv:0809.3773] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    M. Gabella, D. Martelli, A. Passias and J. Sparks, The free energy of N = 2 supersymmetric AdS 4 solutions of M-theory, JHEP 10 (2011) 039 [arXiv:1107.5035] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    M. Gabella, D. Martelli, A. Passias and J. Sparks, N = 2 supersymmetric AdS 4 solutions of M-theory, arXiv:1207.3082 [INSPIRE].
  26. [26]
    N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Holographic, N = 1 Supersymmetric RG Flows on M2 Branes, JHEP 09 (2009) 043 [arXiv:0901.2736] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Donos and J.P. Gauntlett, Superfluid black branes in AdS 4× S 7, JHEP 06 (2011) 053 [arXiv:1104.4478] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    N. Bobev, A. Kundu, K. Pilch and N.P. Warner, Minimal Holographic Superconductors from Maximal Supergravity, JHEP 03 (2012) 064 [arXiv:1110.3454] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Borghese, A. Guarino and D. Roest, All G 2 invariant critical points of maximal supergravity, JHEP 12 (2012) 108 [arXiv:1209.3003] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H. Kodama and M. Nozawa, Classification and stability of vacua in maximal gauged supergravity, JHEP 01 (2013) 045 [arXiv:1210.4238] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP 03 (2011) 137 [arXiv:1102.0239] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    G. Dall’Agata and G. Inverso, de Sitter vacua in N = 8 supergravity and slow-roll conditions, Phys. Lett. B 718 (2013) 1132 [arXiv:1211.3414] [INSPIRE].ADSGoogle Scholar
  37. [37]
    C. Ahn and K. Woo, Are There Any New Vacua of Gauged N = 8 Supergravity in Four Dimensions?, Int. J. Mod. Phys. A 25 (2010) 1819 [arXiv:0904.2105] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    J. Louis and A. Micu, Type 2 theories compactified on Calabi-Yau threefolds in the presence of background fluxes, Nucl. Phys. B 635 (2002) 395 [hep-th/0202168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    U. Theis and S. Vandoren, N = 2 supersymmetric scalar tensor couplings, JHEP 04 (2003) 042 [hep-th/0303048] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    G. Dall’Agata, R. D’Auria, L. Sommovigo and S. Vaula, D = 4, N = 2 gauged supergravity in the presence of tensor multiplets, Nucl. Phys. B 682 (2004) 243 [hep-th/0312210] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    R. D’Auria, L. Sommovigo and S. Vaula, N = 2 supergravity Lagrangian coupled to tensor multiplets with electric and magnetic fluxes, JHEP 11 (2004) 028 [hep-th/0409097] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  42. [42]
    K. Hristov, H. Looyestijn and S. Vandoren, Maximally supersymmetric solutions of D = 4 N = 2 gauged supergravity, JHEP 11 (2009) 115[arXiv:0909.1743] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    J. Louis, P. Smyth and H. Triendl, Supersymmetric Vacua in N = 2 Supergravity, JHEP 08 (2012) 039 [arXiv:1204.3893] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Louis, P. Smyth and H. Triendl, Spontaneous N = 2 to N = 1 Supersymmetry Breaking in Supergravity and Type II String Theory, JHEP 02 (2010) 103 [arXiv:0911.5077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    J. Louis, P. Smyth and H. Triendl, The N = 1 Low-Energy Effective Action of Spontaneously Broken N = 2 Supergravities, JHEP 10 (2010) 017 [arXiv:1008.1214] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    D. Cassani, P. Koerber and O. Varela, All homogeneous N = 2 M-theory truncations with supersymmetric AdS 4 vacua, JHEP 11 (2012) 173 [arXiv:1208.1262] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P. Meessen and T. Ortín, Supersymmetric solutions to gauged N = 2 D = 4 SUGRA: the full timelike shebang, Nucl. Phys. B 863 (2012) 65 [arXiv:1204.0493] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Le Diffon, H. Samtleben and M. Trigiante, N = 8 Supergravity with Local Scaling Symmetry, JHEP 04 (2011) 079 [arXiv:1103.2785] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3-1-2A computer algebra system for polynomial computations, http://www.singular.uni-kl.de.
  50. [50]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    D. Roest and J. Rosseel, De Sitter in Extended Supergravity, Phys. Lett. B 685 (2010) 201 [arXiv:0912.4440] [INSPIRE].MathSciNetADSGoogle Scholar
  52. [52]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. [53]
    J. Michelson, Compactifications of type IIB strings to four-dimensions with nontrivial classical potential, Nucl. Phys. B 495 (1997) 127 [hep-th/9610151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    B. de Wit and M. van Zalk, Electric and magnetic charges in N = 2 conformal supergravity theories, JHEP 10 (2011) 050 [arXiv:1107.3305] [INSPIRE].CrossRefGoogle Scholar
  55. [55]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three-dimensions, JHEP 04 (2001) 022 [hep-th/0103032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • A. Borghese
    • 1
    Email author
  • G. Dibitetto
    • 2
  • A. Guarino
    • 3
  • D. Roest
    • 1
  • O. Varelad
    • 4
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands
  2. 2.Institutionen för fysik och astronomiUniversity of UppsalaUppsalaSweden
  3. 3.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsBern UniversityBernSwitzerland
  4. 4.Institute for Theoretical Physics and Spinoza InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations