Advertisement

A perturbative framework for jet quenching

  • Korinna C. Zapp
  • Frank Krauss
  • Urs A. Wiedemann
Open Access
Article

Abstract

We present a conceptually new framework for describing jet evolution in the dense medium produced in ultra-relativistic nucleus-nucleus collisions using perturbative QCD and its implementation into the Monte Carlo event generator Jewel. The rescattering of hard partons in the medium is modelled by infrared continued pQCD matrix elements supplemented with parton showers. The latter approximate higher order real-emission matrix elements and thus generate medium-induced gluon emissions. The interplay between different emissions is governed by their formation times. The destructive interference between subsequent scattering processes, the non-Abelian version of the Landau-Pomeranchuk-Migdal effect, is also taken into account. In this way the complete radiation pattern is consistently treated in a uniform way. Results obtained within this minimal and theoretically well constrained framework are compared with a variety of experimental data susceptible to jet-quenching effects at both RHIC and the LHC. Overall, a good agreement between data and simulation is found. This new framework also allows to identify and quantify the dominant uncertainties in the simulation, and we show some relevant examples for this.

Keywords

Heavy Ion Phenomenology 

References

  1. [1]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  3. [3]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Bengtsson and T. Sjöstrand, A comparative study of coherent and noncoherent parton shower evolution, Nucl. Phys. B 289 (1987) 810 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Marchesini and B. Webber, Monte Carlo simulation of general hard processes with coherent QCD radiation, Nucl. Phys. B 310 (1988) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Gieseke, P. Stephens and B. Webber, New formalism for QCD parton showers, JHEP 12 (2003)045 [hep-ph/0310083] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Z. Nagy and D.E. Soper, Matching parton showers to NLO computations, JHEP 10 (2005) 024 [hep-ph/0503053] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Dinsdale, M. Ternick and S. Weinzierl, Parton showers from the dipole formalism, Phys. Rev. D 76 (2007) 094003 [arXiv:0709.1026] [INSPIRE].ADSGoogle Scholar
  13. [13]
    J.-C. Winter and F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines, JHEP 07 (2008) 040 [arXiv:0712.3913] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    PHENIX collaboration, A. Adare et al., Suppression pattern of neutral pions at high transverse momentum in Au + Au collisions at \( \sqrt{{{s_{{N\;N}}}}} \) = 200 GeV and constraints on medium transport coefficients, Phys. Rev. Lett. 101 (2008) 232301 [arXiv:0801.4020] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    STAR collaboration, B. Abelev et al., Energy dependence of π ± , p and \( \overline{p} \) transverse momentum spectra for Au+Au collisions at \( \sqrt{{{s_{{N\;N}}}}} \) = 62.4 and 200 GeV, Phys. Lett. B 655 (2007)104 [nucl-ex/0703040] [INSPIRE].ADSGoogle Scholar
  16. [16]
    ALICE collaboration, Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at \( \sqrt{{{s_{{N\;N}}}}} \) = 2.76 TeV, Phys. Lett. B 720 (2012) 52 [arXiv:1208.2711] [INSPIRE].ADSGoogle Scholar
  17. [17]
    ATLAS collaboration, Measurement of the charged particle spectra in PbPb collisions at sqn = 2.76 TeV with the ATLAS detector at the LHC, ATLAS-CONF-2012-120 (2012).
  18. [18]
    CMS collaboration, , Study of high-p T charged particle suppression in PbPb compared to pp collisions at \( \sqrt{{{s_{{N\;N}}}}} \) = 2.76 TeV, Eur. Phys. J. C 72 (2012) 1945 [arXiv:1202.2554] [INSPIRE].ADSGoogle Scholar
  19. [19]
    ATLAS collaboration, Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at \( \sqrt{{{s_{{N\;N}}}}} \) = 2.77 TeV with the ATLAS detector at the LHC, Phys. Rev. Lett. 105 (2010)252303 [arXiv:1011.6182] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    CMS collaboration, Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE].ADSGoogle Scholar
  21. [21]
    ALICE collaboration, Measurement of jet spectra in Pb-Pb collisions at \( \sqrt{{{s_{{N\;N}}}}} \) = 2.76 TeV with the ALICE detector at the LHC, arXiv:1208.6169 [INSPIRE].
  22. [22]
    ATLAS collaboration, Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead-lead collisions at \( \sqrt{{{s_{{N\;N}}}}} \) = 2.76 TeV with the ATLAS detector, Phys. Lett. B 719 (2013) 220 [arXiv:1208.1967] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    CMS collaboration, Measurement of jet fragmentation into charged particles in pp and PbPb collisions at \( \sqrt{{{s_{{N\;N}}}}} \) = 2.76 TeV, JHEP 10 (2012) 087 [arXiv:1205.5872] [INSPIRE].ADSGoogle Scholar
  26. [26]
    ATLAS collaboration, Measurement of inclusive jet charged particle fragmentation functions in Pb+Pb collisions at \( \sqrt{{{s_{nn }}}} \) = 2.76 TeV with the ATLAS detector, ATLAS-CONF-2012-115 (2012).
  27. [27]
    J.D. Bjorken, Energy loss of energetic partons in quark-gluon plasma: possible extinction of high p t jets in hadron-hadron collisions, FERMILAB-PUB-82-059-THY (1982) [INSPIRE].
  28. [28]
    E. Braaten and M.H. Thoma, Energy loss of a heavy fermion in a hot plasma, Phys. Rev. D 44 (1991)1298 [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Gyulassy and X.-n. Wang, Multiple collisions and induced gluon Bremsstrahlung in QCD, Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D. d’Enterria, Jet quenching, arXiv:0902.2011 [INSPIRE].
  31. [31]
    U.A. Wiedemann, Jet quenching in heavy ion collisions, arXiv:0908.2306 [INSPIRE].
  32. [32]
    T. Renk, Modelling jet quenching, arXiv:1207.4885 [INSPIRE].
  33. [33]
    J. Casalderrey-Solana and A. Milov, High-p T and Jets. A summary of results from quark matter 2012, arXiv:1210.8271 [INSPIRE].
  34. [34]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997)291 [hep-ph/9607355] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    U.A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: Opacity expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to nonAbelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    X.-N. Wang and X.-f. Guo, Multiple parton scattering in nuclei: Parton energy loss, Nucl. Phys. A 696 (2001) 788 [hep-ph/0102230] [INSPIRE].ADSGoogle Scholar
  39. [39]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    X.-F. Chen, T. Hirano, E. Wang, X.-N. Wang and H. Zhang, Suppression of high p T hadrons in Pb+Pb collisions at LHC, Phys. Rev. C 84 (2011) 034902 [arXiv:1102.5614] [INSPIRE].ADSGoogle Scholar
  41. [41]
    W. Horowitz and M. Gyulassy, Quenching and tomography from RHIC to LHC, J. Phys. G 38 (2011)124114 [arXiv:1107.2136] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Majumder and C. Shen, Suppression of the high p T charged hadron R AA at the LHC, Phys. Rev. Lett. 109 (2012) 202301 [arXiv:1103.0809] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    B. Zakharov, Jet quenching from RHIC to LHC, arXiv:1105.0191 [INSPIRE].
  44. [44]
    Y. Mehtar-Tani, C.A. Salgado and K. Tywoniuk, The radiation pattern of a QCD antenna in a dense medium, JHEP 10 (2012) 197 [arXiv:1205.5739] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Casalderrey-Solana and E. Iancu, Interference effects in medium-induced gluon radiation, JHEP 08 (2011) 015 [arXiv:1105.1760] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Beraudo, J.G. Milhano and U.A. Wiedemann, The contribution of medium-modified color flow to jet quenching, JHEP 07 (2012) 144 [arXiv:1204.4342] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K.C. Zapp, J. Stachel and U.A. Wiedemann, A local Monte Carlo framework for coherent QCD parton energy loss, JHEP 07 (2011) 118 [arXiv:1103.6252] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    N. Armesto et al., Comparison of jet quenching formalisms for a quark-gluon plasmabrick’, Phys. Rev. C 86 (2012) 064904 [arXiv:1106.1106] [INSPIRE].ADSGoogle Scholar
  49. [49]
    W.-T. Deng, X.-N. Wang and R. Xu, Hadron production in p+p, p+Pb and Pb+Pb collisions with the HIJING 2.0 model at energies available at the CERN Large Hadron Collider, Phys. Rev. C 83 (2011) 014915 [arXiv:1008.1841] [INSPIRE].ADSGoogle Scholar
  50. [50]
    I. Lokhtin et al., Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs), Comput. Phys. Commun. 180 (2009) 779 [arXiv:0809.2708] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    K. Zapp, G. Ingelman, J. Rathsman, J. Stachel and U.A. Wiedemann, A Monte Carlo model forjet quenching’, Eur. Phys. J. C 60 (2009) 617 [arXiv:0804.3568] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    N. Armesto, L. Cunqueiro and C.A. Salgado, Q-PYTHIA: a medium-modified implementation of final state radiation, Eur. Phys. J. C 63 (2009) 679 [arXiv:0907.1014] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    N. Armesto, G. Corcella, L. Cunqueiro and C.A. Salgado, Angular-ordered parton showers with medium-modified splitting functions, JHEP 11 (2009) 122 [arXiv:0909.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Renk, A comparison study of medium-modified QCD shower evolution scenarios, Phys. Rev. C 79 (2009) 054906 [arXiv:0901.2818] [INSPIRE].ADSGoogle Scholar
  55. [55]
    B. Schenke, C. Gale and S. Jeon, MARTINI: an event generator for relativistic heavy-ion collisions, Phys. Rev. C 80 (2009) 054913 [arXiv:0909.2037] [INSPIRE].ADSGoogle Scholar
  56. [56]
    C. Coleman-Smith and B. Müller, What can we learn from dijets? A systematic study with VNI/BMS, arXiv:1210.3377 [INSPIRE].
  57. [57]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].
  58. [58]
    G. Gustafson and U. Pettersson, Dipole formulation of QCD cascades, Nucl. Phys. B 306 (1988)746 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Y.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S. Troian, Basics of perturbative QCD, Atlantica Séguier Frontières, France (1991).Google Scholar
  60. [60]
    R.K. Ellis, W. J. Stirling and B. Webber, QCD and collider physics, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology volume 8, Cambridge University Press, Cambridge U.K. (1996).Google Scholar
  61. [61]
    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006)026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Whalley, D. Bourilkov and R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].
  66. [66]
    K. Eskola, H. Paukkunen and C. Salgado, EPS09: a new generation of NLO and LO nuclear parton distribution functions, JHEP 04 (2009) 065 [arXiv:0902.4154] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J.D. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region, Phys. Rev. D 27 (1983) 140 [INSPIRE].ADSGoogle Scholar
  68. [68]
    K. Zapp, G. Ingelman, J. Rathsman and J. Stachel, Jet quenching from soft QCD scattering in the quark-gluon plasma, Phys. Lett. B 637 (2006) 179 [hep-ph/0512300] [INSPIRE].ADSGoogle Scholar
  69. [69]
    K.J. Eskola, K. Kajantie and J. Lindfors, Quark and gluon production in high-energy nucleus-nucleus collisions, Nucl. Phys. B 323 (1989) 37 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Buckley et al., Rivet user manual, arXiv:1003.0694 [INSPIRE].
  71. [71]
    ALEPH collaboration, R. Barate et al., Studies of quantum chromodynamics with the ALEPH detector, Phys. Rept. 294 (1998) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    DELPHI collaboration, P. Abreu et al., Tuning and test of fragmentation models based on identified particles and precision event shape data, Z. Phys. C 73 (1996) 11.Google Scholar
  73. [73]
    ATLAS collaboration, Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Rev. D 84 (2011) 054001 [arXiv:1107.3311] [INSPIRE].ADSGoogle Scholar
  74. [74]
    ATLAS collaboration, Study of jet shapes in inclusive jet production in pp collisions at \( \sqrt{s} \) =7 TeV using the ATLAS detector, Phys. Rev. D 83(2011)052003[arXiv:1101.0070] [INSPIRE].ADSGoogle Scholar
  75. [75]
    ATLAS collaboration, Measurement of dijet azimuthal decorrelations in pp collisions at \( \sqrt{s} \) =7 TeV, Phys. Rev. Lett. 106(2011)172002[arXiv:1102.2696][INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    CMS collaboration, Measurement of the ratio of the 3-jet to 2-jet cross sections in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 702 (2011) 336 [arXiv:1106.0647] [INSPIRE].ADSGoogle Scholar
  77. [77]
    PHENIX collaboration, A. Adare et al., Inclusive cross-section and double helicity asymmetry for π 0 production in p + p collisions at \( \sqrt{s} \) = 200 GeV: implications for the polarized gluon distribution in the proton, Phys. Rev. D 76 (2007) 051106 [arXiv:0704.3599] [INSPIRE].ADSGoogle Scholar
  78. [78]
    PHENIX collaboration, A. Adare et al., Neutral pion production with respect to centrality and reaction plane in Au+Au collisions at \( \sqrt{{{s_{{N\;N}}}}} \) = 200 GeV, arXiv:1208.2254 [INSPIRE].
  79. [79]
    R. Soltz et al., Constraining the initial temperature and shear viscosity in a hybrid hydrodynamic model of \( \sqrt{{{s_{{N\;N}}}}} \) = 200 GeV Au+Au collisions using pion spectra, elliptic flow and femtoscopic radii, arXiv:1208.0897 [INSPIRE].
  80. [80]
    M. Csanad and I. Majer, Equation of state and initial temperature of quark gluon plasma at RHIC, Central Eur. J. Phys. 10 (2012) 850 [arXiv:1101.1279] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    J.K. Nayak, J.-e. Alam, S. Sarkar and B. Sinha, Measuring initial temperature through photon to dilepton ratio in heavy ion collision, J. Phys. G 35 (2008) 104161 [arXiv:0806.0447] [INSPIRE].ADSGoogle Scholar
  82. [82]
    M. Cacciari, J. Rojo, G.P. Salam and G. Soyez, Jet reconstruction in heavy ion collisions, Eur. Phys. J. C 71 (2011) 1539 [arXiv:1010.1759] [INSPIRE].ADSGoogle Scholar
  83. [83]
    M. Cacciari, G.P. Salam and G. Soyez, Fluctuations and asymmetric jet events in PbPb collisions at the LHC, Eur. Phys. J. C 71 (2011) 1692 [arXiv:1101.2878] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    G. de Barros, B. Fenton-Olsen, P. Jacobs and M. Ploskon, Data-driven analysis methods for the measurement of reconstructed jets in heavyion collisions at RHIC and LHC, arXiv:1208.1518 [INSPIRE].
  85. [85]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    F. D’Eramo, M. Lekaveckas, H. Liu and K. Rajagopal, Momentum Broadening in Weakly Coupled quark-gluon Plasma (with a view to finding the quasiparticles within liquid quark-gluon plasma), arXiv:1211.1922 [INSPIRE].

Copyright information

© SISSA 2013

Authors and Affiliations

  • Korinna C. Zapp
    • 1
    • 2
  • Frank Krauss
    • 2
  • Urs A. Wiedemann
    • 1
  1. 1.Department of PhysicsCERN, Theory UnitGeneva 23Switzerland
  2. 2.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.

Personalised recommendations