Advertisement

Fitting the Higgs to natural SUSY

  • Raffaele Tito D’Agnolo
  • Eric Kuflik
  • Marco Zanetti
Open Access
Article

Abstract

We present a fit to the 2012 LHC Higgs data in different supersymmetric frameworks using naturalness as a guiding principle. We consider the MSSM and its D-term and F -term extensions that can raise the tree-level Higgs mass. When adding an extra chiral superfield to the MSSM, three parameters are needed determine the tree-level couplings of the lightest Higgs. Two more parameters cover the most relevant loop corrections, that affect the hγγ and hgg vertexes. Motivated by this consideration, we present the results of a five parameters fit encompassing a vast class of complete supersymmetric theories. We find meaningful bounds on singlet mixing and on the mass of the pseudoscalar Higgs m A as a function of tan β in the MSSM. We show that in the (m A , tan β) plane, Higgs couplings measurements are probing areas of parameter space currently inaccessible to direct searches. We also consider separately the two cases in which only loop effects or only tree-level effects are sizable. In the former case we study in detail stops’ and charginos’ contributions to Higgs couplings, while in the latter we show that the data point to the decoupling limit of the Higgs sector. In a particular realization of the decoupling limit, with an approximate PQ symmetry, we obtain constraints on the heavy scalar Higgs mass in a general type-II Two Higgs Doublet Model.

Keywords

Higgs Physics Extended Supersymmetry 

References

  1. [1]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  3. [3]
    CMS collabroation, Combination of Standard Model Higgs boson searches and measurements of properties of the Higgs boson candidate with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).
  4. [4]
    ATLAS collaboration, Updated ATLAS results on the signal strength of the Higgs-like boson for decays into WW and heavy fermion final states, ATLAS-CONF-2012-162 (2012).
  5. [5]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Ellis and T. You, Global analysis of experimental constraints on a possible Higgs-like particle with mass ∼ 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012)018 [arXiv:1207.1716] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Bertolini and M. McCullough, The social Higgs, JHEP 12 (2012) 118 [arXiv:1207.4209] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012)045 [arXiv:1207.1717] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: Higgs couplings, JHEP 01 (2013)057 [arXiv:1206.5303] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  18. [18]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012)131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G.F. Giudice, P. Paradisi, A. Strumia and A. Strumia, Correlation between the Higgs decay rate to two photons and the muon g − 2, JHEP 10 (2012) 186 [arXiv:1207.6393] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson in the gamma-gamma channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012).
  23. [23]
    ATLAS collaboration, Update of the HW W (∗)eνμν analysis with 13 fb −1 of \( \sqrt{s}=8 \) TeV data collected with the ATLAS detector,ATLAS-CONF-2012-158(2012).
  24. [24]
    ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson in the HZZ (∗) → 4ℓ channel with the ATLAS detector., ATLAS-CONF-2012-092 (2012).
  25. [25]
    ATLAS collaboration, Search for the standard model Higgs boson in H → τ τ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160 (2012).
  26. [26]
    ATLAS collaboration, Search for the standard model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector, ATLAS-CONF-2012-161 (2012).
  27. [27]
    CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015 (2012).
  28. [28]
    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-12-042 (2012).
  29. [29]
    CMS collaboration, Updated results on the new boson discovered in the search for the standard model Higgs boson in the ZZ → 4 leptons channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-12-041 (2012).
  30. [30]
    CMS collaboration, Search for the standard model Higgs boson decaying to τ pairs, CMS-PAS-HIG-12-043 (2012).
  31. [31]
    CMS collaboration, Search for the standard model Higgs boson decaying to τ pairs produced in association with a W or Z boson, CMS-PAS-HIG-12-051 (2012).
  32. [32]
    CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks, CMS-PAS-HIG-12-044 (2012).
  33. [33]
    CMS collaboration, Search for Higgs boson production in association with top quark pairs in pp collisions, CMS-PAS-HIG-12-025 (2012).
  34. [34]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].ADSGoogle Scholar
  35. [35]
    G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012)1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
  38. [38]
    K. Blum and R.T. D’Agnolo, 2 Higgs or not 2 Higgs, Phys. Lett. B 714 (2012) 66 [arXiv:1202.2364] [INSPIRE].ADSGoogle Scholar
  39. [39]
    M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].ADSGoogle Scholar
  40. [40]
    P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R.S. Chivukula, H.-J. He, J. Howard and E.H. Simmons, The structure of electroweak corrections due to extended gauge symmetries, Phys. Rev. D 69 (2004) 015009 [hep-ph/0307209] [INSPIRE].ADSGoogle Scholar
  42. [42]
    D.E. Morrissey and A. Pierce, Modified Higgs boson phenomenology from gauge or gaugino mediation in the NMSSM, Phys. Rev. D 78 (2008) 075029 [arXiv:0807.2259] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    CMS collaboration, Search for MSSM neutral Higgs bosons decaying to τ pairs in pp collisions, CMS-PAS-HIG-12-050 (2012).
  45. [45]
    ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M.S. Carena, S. Heinemeyer, C. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J. C 26 (2003) 601 [hep-ph/0202167] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M.S. Carena, S. Heinemeyer, C. Wagner and G. Weiglein, MSSM Higgs boson searches at the Tevatron and the LHC: impact of different benchmark scenarios, Eur. Phys. J. C 45 (2006) 797 [hep-ph/0511023] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    ATLAS collaboration, Search for neutral MSSM Higgs bosons in \( \sqrt{s}=7 \) TeV pp collisions at ATLAS, ATLAS-CONF-2012-094 (2012).
  49. [49]
    CMS collaboration, MSSM Higgs production in association with b quarksSemile ptonic, CMS-PAS-HIG-12-027 (2012).
  50. [50]
    CMS collaboration, MSSM Higgs production in association with b quarksAll hadronic, CMS-PAS-HIG-12-026 (2012).
  51. [51]
    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].ADSGoogle Scholar
  53. [53]
    R. Auzzi, A. Giveon and S.B. Gudnason, Flavor of quiver-like realizations of effective supersymmetry, JHEP 02 (2012) 069 [arXiv:1112.6261] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, Phys. Rev. D 86 (2012)075009 [arXiv:1201.1293] [INSPIRE].ADSGoogle Scholar
  55. [55]
    N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012)046 [arXiv:1203.1622] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP 04 (2012) 116 [arXiv:1203.0572] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    R. Barbieri and D. Pappadopulo, S-particles at their naturalness limits, JHEP 10 (2009) 061 [arXiv:0906.4546] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A non standard supersymmetric spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].Google Scholar
  60. [60]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  61. [61]
    M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].Google Scholar
  62. [62]
    M.R. Buckley and D. Hooper, Are there hints of light stops in recent Higgs search results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, arXiv:1208.1765 [INSPIRE].
  64. [64]
  65. [65]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    J. Kaplan, Dark matter generation and split supersymmetry, JHEP 10 (2006) 065 [hep-ph/0601262] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    B.S. Acharya, G. Kane, S. Watson and P. Kumar, A non-thermal WIMP miracle, Phys. Rev. D 80 (2009) 083529 [arXiv:0908.2430] [INSPIRE].ADSGoogle Scholar
  70. [70]
    L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with Wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    H. Murayama, Y. Nomura, S. Shirai and K. Tobioka, Compact supersymmetry, Phys. Rev. D 86 (2012)115014 [arXiv:1206.4993] [INSPIRE].ADSGoogle Scholar
  75. [75]
    G. Bélanger, M. Heikinheimo and V. Sanz, Model-independent bounds on squarks from monophoton searches, JHEP 08 (2012) 151 [arXiv:1205.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    M. Drees, M. Hanussek and J.S. Kim, Light stop searches at the LHC with monojet events, Phys. Rev. D 86 (2012) 035024 [arXiv:1201.5714] [INSPIRE].ADSGoogle Scholar
  78. [78]
    G.F. Giudice, T. Han, K. Wang and L.-T. Wang, Nearly degenerate gauginos and dark matter at the LHC, Phys. Rev. D 81 (2010) 115011 [arXiv:1004.4902] [INSPIRE].ADSGoogle Scholar
  79. [79]
    J. Gunion, G. Gamberini and S. Novaes, Can the Higgs bosons of the minimal supersymmetric model be detected at a hadron collider via two photon decays?, Phys. Rev. D 38 (1988)3481 [INSPIRE].ADSGoogle Scholar
  80. [80]
    A. Djouadi, V. Driesen, W. Hollik and J.I. Illana, The coupling of the lightest SUSY Higgs boson to two photons in the decoupling regime, Eur. Phys. J. C 1 (1998) 149 [hep-ph/9612362] [INSPIRE].ADSGoogle Scholar
  81. [81]
    M.A. Diaz and P. Fileviez Perez, Can we distinguish between h SM and h 0 in split supersymmetry?, J. Phys. G 31 (2005) 563 [hep-ph/0412066] [INSPIRE].ADSGoogle Scholar
  82. [82]
    K. Choi, S.H. Im, K.S. Jeong and M. Yamaguchi, Higgs mixing and diphoton rate enhancement in NMSSM models, JHEP 02 (2013) 090 [arXiv:1211.0875] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    R. Huo, G. Lee, A.M. Thalapillil and C.E. Wagner, SU(2) ⊗ SU(2) gauge extensions of the MSSM revisited, arXiv:1212.0560 [INSPIRE].
  84. [84]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Raffaele Tito D’Agnolo
    • 1
    • 2
  • Eric Kuflik
    • 3
  • Marco Zanetti
    • 4
  1. 1.CERN, European Organization for Nuclear ResearchGenevaSwitzerland
  2. 2.Scuola Normale Superiore and INFN — Sezione di PisaPisaItaly
  3. 3.Raymond and Beverly Sackler School of Physics and AstronomyTel-Aviv UniversityTel-AvivIsrael
  4. 4.Massachussets Institute of TechnologyCambridgeU.S.A

Personalised recommendations