Fitting the Higgs to natural SUSY

Abstract

We present a fit to the 2012 LHC Higgs data in different supersymmetric frameworks using naturalness as a guiding principle. We consider the MSSM and its D-term and F -term extensions that can raise the tree-level Higgs mass. When adding an extra chiral superfield to the MSSM, three parameters are needed determine the tree-level couplings of the lightest Higgs. Two more parameters cover the most relevant loop corrections, that affect the hγγ and hgg vertexes. Motivated by this consideration, we present the results of a five parameters fit encompassing a vast class of complete supersymmetric theories. We find meaningful bounds on singlet mixing and on the mass of the pseudoscalar Higgs m A as a function of tan β in the MSSM. We show that in the (m A , tan β) plane, Higgs couplings measurements are probing areas of parameter space currently inaccessible to direct searches. We also consider separately the two cases in which only loop effects or only tree-level effects are sizable. In the former case we study in detail stops’ and charginos’ contributions to Higgs couplings, while in the latter we show that the data point to the decoupling limit of the Higgs sector. In a particular realization of the decoupling limit, with an approximate PQ symmetry, we obtain constraints on the heavy scalar Higgs mass in a general type-II Two Higgs Doublet Model.

References

  1. [1]

    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    CMS collabroation, Combination of Standard Model Higgs boson searches and measurements of properties of the Higgs boson candidate with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).

  4. [4]

    ATLAS collaboration, Updated ATLAS results on the signal strength of the Higgs-like boson for decays into WW and heavy fermion final states, ATLAS-CONF-2012-162 (2012).

  5. [5]

    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    J. Ellis and T. You, Global analysis of experimental constraints on a possible Higgs-like particle with mass ∼ 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012)018 [arXiv:1207.1716] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    D. Bertolini and M. McCullough, The social Higgs, JHEP 12 (2012) 118 [arXiv:1207.4209] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    J.R. Espinosa, C. Grojean, V. Sanz and M. Trott, NSUSY fits, JHEP 12 (2012) 077 [arXiv:1207.7355] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012)045 [arXiv:1207.1717] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: Higgs couplings, JHEP 01 (2013)057 [arXiv:1206.5303] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012)131 [arXiv:1112.2703] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    G.F. Giudice, P. Paradisi, A. Strumia and A. Strumia, Correlation between the Higgs decay rate to two photons and the muon g − 2, JHEP 10 (2012) 186 [arXiv:1207.6393] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson in the gamma-gamma channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012).

  23. [23]

    ATLAS collaboration, Update of the HW W (∗)eνμν analysis with 13 fb −1 of \( \sqrt{s}=8 \) TeV data collected with the ATLAS detector,ATLAS-CONF-2012-158(2012).

  24. [24]

    ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson in the HZZ (∗) → 4ℓ channel with the ATLAS detector., ATLAS-CONF-2012-092 (2012).

  25. [25]

    ATLAS collaboration, Search for the standard model Higgs boson in H → τ τ decays in proton-proton collisions with the ATLAS detector, ATLAS-CONF-2012-160 (2012).

  26. [26]

    ATLAS collaboration, Search for the standard model Higgs boson in produced in association with a vector boson and decaying to bottom quarks with the ATLAS detector, ATLAS-CONF-2012-161 (2012).

  27. [27]

    CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, CMS-PAS-HIG-12-015 (2012).

  28. [28]

    CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-12-042 (2012).

  29. [29]

    CMS collaboration, Updated results on the new boson discovered in the search for the standard model Higgs boson in the ZZ → 4 leptons channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-12-041 (2012).

  30. [30]

    CMS collaboration, Search for the standard model Higgs boson decaying to τ pairs, CMS-PAS-HIG-12-043 (2012).

  31. [31]

    CMS collaboration, Search for the standard model Higgs boson decaying to τ pairs produced in association with a W or Z boson, CMS-PAS-HIG-12-051 (2012).

  32. [32]

    CMS collaboration, Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks, CMS-PAS-HIG-12-044 (2012).

  33. [33]

    CMS collaboration, Search for Higgs boson production in association with top quark pairs in pp collisions, CMS-PAS-HIG-12-025 (2012).

  34. [34]

    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012)1 [arXiv:1106.0034] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].

  38. [38]

    K. Blum and R.T. D’Agnolo, 2 Higgs or not 2 Higgs, Phys. Lett. B 714 (2012) 66 [arXiv:1202.2364] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    R.S. Chivukula, H.-J. He, J. Howard and E.H. Simmons, The structure of electroweak corrections due to extended gauge symmetries, Phys. Rev. D 69 (2004) 015009 [hep-ph/0307209] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    D.E. Morrissey and A. Pierce, Modified Higgs boson phenomenology from gauge or gaugino mediation in the NMSSM, Phys. Rev. D 78 (2008) 075029 [arXiv:0807.2259] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    CMS collaboration, Search for MSSM neutral Higgs bosons decaying to τ pairs in pp collisions, CMS-PAS-HIG-12-050 (2012).

  45. [45]

    ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    M.S. Carena, S. Heinemeyer, C. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J. C 26 (2003) 601 [hep-ph/0202167] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    M.S. Carena, S. Heinemeyer, C. Wagner and G. Weiglein, MSSM Higgs boson searches at the Tevatron and the LHC: impact of different benchmark scenarios, Eur. Phys. J. C 45 (2006) 797 [hep-ph/0511023] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    ATLAS collaboration, Search for neutral MSSM Higgs bosons in \( \sqrt{s}=7 \) TeV pp collisions at ATLAS, ATLAS-CONF-2012-094 (2012).

  49. [49]

    CMS collaboration, MSSM Higgs production in association with b quarksSemile ptonic, CMS-PAS-HIG-12-027 (2012).

  50. [50]

    CMS collaboration, MSSM Higgs production in association with b quarksAll hadronic, CMS-PAS-HIG-12-026 (2012).

  51. [51]

    S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    R. Auzzi, A. Giveon and S.B. Gudnason, Flavor of quiver-like realizations of effective supersymmetry, JHEP 02 (2012) 069 [arXiv:1112.6261] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, Phys. Rev. D 86 (2012)075009 [arXiv:1201.1293] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012)046 [arXiv:1203.1622] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP 04 (2012) 116 [arXiv:1203.0572] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    R. Barbieri and D. Pappadopulo, S-particles at their naturalness limits, JHEP 10 (2009) 061 [arXiv:0906.4546] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A non standard supersymmetric spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].

    Google Scholar 

  60. [60]

    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  61. [61]

    M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].

    Google Scholar 

  62. [62]

    M.R. Buckley and D. Hooper, Are there hints of light stops in recent Higgs search results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    M. Reece, Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude, arXiv:1208.1765 [INSPIRE].

  64. [64]

    https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots#SusyDirectStopSummary.

  65. [65]

    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    J. Kaplan, Dark matter generation and split supersymmetry, JHEP 10 (2006) 065 [hep-ph/0601262] [INSPIRE].

    ADS  Article  Google Scholar 

  69. [69]

    B.S. Acharya, G. Kane, S. Watson and P. Kumar, A non-thermal WIMP miracle, Phys. Rev. D 80 (2009) 083529 [arXiv:0908.2430] [INSPIRE].

    ADS  Google Scholar 

  70. [70]

    L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with Wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  72. [72]

    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    H. Murayama, Y. Nomura, S. Shirai and K. Tobioka, Compact supersymmetry, Phys. Rev. D 86 (2012)115014 [arXiv:1206.4993] [INSPIRE].

    ADS  Google Scholar 

  75. [75]

    G. Bélanger, M. Heikinheimo and V. Sanz, Model-independent bounds on squarks from monophoton searches, JHEP 08 (2012) 151 [arXiv:1205.1463] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    M. Drees, M. Hanussek and J.S. Kim, Light stop searches at the LHC with monojet events, Phys. Rev. D 86 (2012) 035024 [arXiv:1201.5714] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    G.F. Giudice, T. Han, K. Wang and L.-T. Wang, Nearly degenerate gauginos and dark matter at the LHC, Phys. Rev. D 81 (2010) 115011 [arXiv:1004.4902] [INSPIRE].

    ADS  Google Scholar 

  79. [79]

    J. Gunion, G. Gamberini and S. Novaes, Can the Higgs bosons of the minimal supersymmetric model be detected at a hadron collider via two photon decays?, Phys. Rev. D 38 (1988)3481 [INSPIRE].

    ADS  Google Scholar 

  80. [80]

    A. Djouadi, V. Driesen, W. Hollik and J.I. Illana, The coupling of the lightest SUSY Higgs boson to two photons in the decoupling regime, Eur. Phys. J. C 1 (1998) 149 [hep-ph/9612362] [INSPIRE].

    ADS  Google Scholar 

  81. [81]

    M.A. Diaz and P. Fileviez Perez, Can we distinguish between h SM and h 0 in split supersymmetry?, J. Phys. G 31 (2005) 563 [hep-ph/0412066] [INSPIRE].

    ADS  Google Scholar 

  82. [82]

    K. Choi, S.H. Im, K.S. Jeong and M. Yamaguchi, Higgs mixing and diphoton rate enhancement in NMSSM models, JHEP 02 (2013) 090 [arXiv:1211.0875] [INSPIRE].

    ADS  Article  Google Scholar 

  83. [83]

    R. Huo, G. Lee, A.M. Thalapillil and C.E. Wagner, SU(2) ⊗ SU(2) gauge extensions of the MSSM revisited, arXiv:1212.0560 [INSPIRE].

  84. [84]

    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eric Kuflik.

Additional information

ArXiv ePrint: 1212.1165

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

D’Agnolo, R.T., Kuflik, E. & Zanetti, M. Fitting the Higgs to natural SUSY. J. High Energ. Phys. 2013, 43 (2013). https://doi.org/10.1007/JHEP03(2013)043

Download citation

Keywords

  • Higgs Physics
  • Extended Supersymmetry