Integrable boundaries in AdS/CFT: revisiting the Z=0 giant graviton and D7-brane

Article
  • 51 Downloads

Abstract

We consider the worldsheet boundary scattering and the corresponding boundary algebras for the Z = 0 giant graviton and the Z = 0 D7-brane in the AdS/CFT correspondence. We consider two approaches to the boundary scattering, the usual one governed by the (generalized) twisted Yangians and the q-deformed model of these boundaries governed by the quantum affine coideal subalgebras. We show that the q-deformed approach leads to boundary algebras that are of a more compact form than the corresponding twisted Yangians, and thus are favourable to use for explicit calculations. We obtain the q-deformed reflection matrices for both boundaries which in the q → 1 limit specialize to the ones obtained using twisted Yangians.

Keywords

Quantum Groups AdS-CFT Correspondence Boundary Quantum Field Theory Exact S-Matrix 

References

  1. [1]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [INSPIRE].MathSciNetGoogle Scholar
  3. [3]
    N. Beisert, The analytic Bethe ansatz for a chain with centrally extended su(2|2) symmetry, J. Stat. Mech. (2007) P01017.Google Scholar
  4. [4]
    G. Arutyunov, S. Frolov, J. Plefka and M. Zamaklar, The Off-shell Symmetry Algebra of the Light-cone AdS 5 × S 5 Superstring, J. Phys. A 40 (2007) 3583 [hep-th/0609157] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    N. Beisert, The S-matrix of AdS/CFT and Yangian symmetry, PoS (Solvay) 002 [arXiv:0704.0400] [INSPIRE].
  6. [6]
    G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10 (2004) 016 [hep-th/0406256] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    N. Beisert and M. Staudacher, Long-range psu(2, 2|4) Bethe Ansatze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    M. de Leeuw, Bound States, Yangian Symmetry and Classical r-matrix for the AdS 5 × S 5 Superstring, JHEP 06 (2008) 085 [arXiv:0804.1047] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    G. Arutyunov and S. Frolov, The S-matrix of String Bound States, Nucl. Phys. B 804 (2008) 90 [arXiv:0803.4323] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. de Leeuw, The Bethe Ansatz for AdS 5 × S 5 bound states, JHEP 01 (2009) 005 [arXiv:0809.0783] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Arutyunov, M. de Leeuw and A. Torrielli, The bound state S-matrix for AdS 5 × S 5 superstring, Nucl. Phys. B 819 (2009) 319 [arXiv:0902.0183] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N =4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe Ansatz for planar AdS/CFT: A Proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE].MathSciNetGoogle Scholar
  14. [14]
    G. Arutyunov and S. Frolov, Thermodynamic Bethe Ansatz for the AdS 5 × S 5 mirror model, JHEP 05 (2009) 068 [arXiv:0903.0141] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    N. Drukker, Integrable Wilson loops, arXiv:1203.1617 [INSPIRE].
  16. [16]
    D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    V. Balasubramanian and A. Naqvi, Giant gravitons and a correspondence principle, Phys. Lett. B 528 (2002) 111 [hep-th/0111163] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    A. Dabholkar and S. Parvizi, Dp-branes in PP wave background, Nucl. Phys. B 641 (2002) 223 [hep-th/0203231] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    D.E. Berenstein, E. Gava, J.M. Maldacena, K.S. Narain and H.S. Nastase, Open strings on plane waves and their Yang-Mills duals, hep-th/0203249 [INSPIRE].
  23. [23]
    P. Lee and J.-W. Park, Open strings in PP wave background from defect conformal field theory, Phys. Rev. D 67 (2003) 026002 [hep-th/0203257] [INSPIRE].ADSGoogle Scholar
  24. [24]
    B. Stefanski Jr., Open spinning strings, JHEP 03 (2004) 057 [hep-th/0312091] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    B. Stefanski Jr., Open string plane wave light cone superstring field theory, hep-th/0304114 [INSPIRE].
  26. [26]
    B. Chen, X.-J. Wang and Y.-S. Wu, Integrable open spin chain in super Yang-Mills and the plane wave/SYM duality, JHEP 02 (2004) 029 [hep-th/0401016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    B. Chen, X.-J. Wang and Y.-S. Wu, Open spin chain and open spinning string, Phys. Lett. B 591 (2004) 170 [hep-th/0403004] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    A. Dekel and Y. Oz, Integrability of Green-Schwarz σ-models with boundaries, JHEP 08 (2011) 004 [arXiv:1106.3446] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    D.M. Hofman and J.M. Maldacena, Reflecting magnons, JHEP 11 (2007) 063 [arXiv:0708.2272] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    D. Berenstein and S.E. Vazquez, Integrable open spin chains from giant gravitons, JHEP 06 (2005) 059 [hep-th/0501078] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    D. Berenstein, D.H. Correa and S.E. Vazquez, A study of open strings ending on giant gravitons, spin chains and integrability, JHEP 09 (2006) 065 [hep-th/0604123] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    L. Palla, Issues on magnon reflection, Nucl. Phys. B 808 (2009) 205 [arXiv:0807.3646] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    C. Ahn, D. Bak and S.-J. Rey, Reflecting magnon bound states, JHEP 04 (2008) 050 [arXiv:0712.4144] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    Z. Bajnok and L. Palla, Boundary finite size corrections for multiparticle states and planar AdS/CFT, JHEP 01 (2011) 011 [arXiv:1010.5617] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    R.I. Nepomechie, Revisiting the Y = 0 open spin chain at one loop, JHEP 11 (2011) 069 [arXiv:1109.4366] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    Z. Bajnok, R.I. Nepomechie, L. Palla and R. Suzuki, Y -system for Y = 0 brane in planar AdS/CFT, JHEP 08 (2012) 149 [arXiv:1205.2060] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Karch and L. Randall, Open and closed string interpretation of SUSY CFTs on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    O. DeWolfe and N. Mann, Integrable open spin chains in defect conformal field theory, JHEP 04 (2004) 035 [hep-th/0401041] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    Y. Susaki, Y. Takayama and K. Yoshida, Open semiclassical strings and long defect operators in AdS/dCFT correspondence, Phys. Rev. D 71 (2005) 126006 [hep-th/0410139] [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    D.H. Correa, V. Regelskis and C.A. Young, Integrable achiral D5-brane reflections and asymptotic Bethe equations, J. Phys. A 44 (2011) 325403 [arXiv:1105.3707] [INSPIRE].MathSciNetGoogle Scholar
  43. [43]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavor, JHEP 07 (2003) 049 [hep-th/0304032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    D. Correa and C. Young, Reflecting magnons from D7 and D5 branes, J. Phys. A 41 (2008) 455401 [arXiv:0808.0452] [INSPIRE].MathSciNetADSGoogle Scholar
  45. [45]
    N. MacKay and V. Regelskis, On the reflection of magnon bound states, JHEP 08 (2010) 055 [arXiv:1006.4102] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. de Leeuw, The S-matrix of the AdS 5 xS 5 superstring, arXiv:1007.4931 [INSPIRE].
  47. [47]
    A. Torrielli, Yangians, S-matrices and AdS/CFT, J. Phys. A 44 (2011) 263001 [arXiv:1104.2474] [INSPIRE].ADSGoogle Scholar
  48. [48]
    E. Sklyanin, Boundary Conditions for Integrable Quantum Systems, J. Phys. A 21 (1988) 2375 [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    G.I. Olshanskii, Twisted Yangians and infinite dimensional classical Lie algebras, Lect. Notes Math. 1510 (1992) 104.MathSciNetCrossRefGoogle Scholar
  50. [50]
    A.I. Molev and E. Ragoucy, Representations of reflection algebras, Rev. Math. Phys. 14 (2002) 317 [math/0107213].MathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    A. Mudrov, Reflection equation and twisted Yangians, J. Phys. 48 (2007) 093501 [math/0612737].MathSciNetGoogle Scholar
  52. [52]
    N. Guay and X. Ma, Twisted Yangians, twisted quantum loop algebras and affine Hecke algebras of type BC, (2011).Google Scholar
  53. [53]
    G. Delius, N. MacKay and B. Short, Boundary remnant of Yangian symmetry and the structure of rational reflection matrices, Phys. Lett. B 522 (2001) 335 [Erratum ibid. B 524 (2002) 401] [hep-th/0109115] [INSPIRE].MathSciNetADSGoogle Scholar
  54. [54]
    N.J. MacKay, Rational K matrices and representations of twisted Yangians, J. Phys. A 35 (2002) 7865 [math/0205155].MathSciNetADSGoogle Scholar
  55. [55]
    N. MacKay, Introduction to Yangian symmetry in integrable field theory, Int. J. Mod. Phys. A 20 (2005) 7189 [hep-th/0409183] [INSPIRE].MathSciNetADSGoogle Scholar
  56. [56]
    V. Regelskis, Reflection algebras for SL(2) and GL(1|1), arXiv:1206.6498.
  57. [57]
    C. Ahn and R.I. Nepomechie, Yangian symmetry and bound states in AdS/CFT boundary scattering, JHEP 05 (2010) 016 [arXiv:1003.3361] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    N. MacKay and V. Regelskis, Yangian symmetry of the Y = 0 maximal giant graviton, JHEP 12 (2010) 076 [arXiv:1010.3761] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    L. Palla, Yangian symmetry of boundary scattering in AdS/CFT and the explicit form of bound state reflection matrices, JHEP 03 (2011) 110 [arXiv:1102.0122] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    N. MacKay and V. Regelskis, Reflection algebra, Yangian symmetry and bound-states in AdS/CFT, JHEP 01 (2012) 134 [arXiv:1101.6062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    N. MacKay and V. Regelskis, Achiral boundaries and the twisted Yangian of the D5-brane, JHEP 08 (2011) 019 [arXiv:1105.4128] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    N. Beisert, W. Galleas and T. Matsumoto, A Quantum Affine Algebra for the Deformed Hubbard Chain, J. Phys. A 45 (2012) 365206 [arXiv:1102.5700] [INSPIRE].MathSciNetGoogle Scholar
  63. [63]
    M. de Leeuw, T. Matsumoto and V. Regelskis, The bound state S-matrix of the deformed Hubbard chain, JHEP 04 (2012) 021 [arXiv:1109.1410] [INSPIRE].CrossRefGoogle Scholar
  64. [64]
    N. Beisert and P. Koroteev, Quantum Deformations of the One-Dimensional Hubbard Model, J. Phys. A 41 (2008) 255204 [arXiv:0802.0777] [INSPIRE].MathSciNetADSGoogle Scholar
  65. [65]
    B. Hoare and A. Tseytlin, Towards the quantum S-matrix of the Pohlmeyer reduced version of AdS 5 × S 5 superstring theory, Nucl. Phys. B 851 (2011) 161 [arXiv:1104.2423] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    B. Hoare, T.J. Hollowood and J.L. Miramontes, Bound States of the q-Deformed AdS 5 × S 5 Superstring S-matrix, JHEP 10 (2012) 076 [arXiv:1206.0010] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    R. Murgan and R.I. Nepomechie, q-deformed su(2|2) boundary S-matrices via the ZF algebra, JHEP 06 (2008) 096 [arXiv:0805.3142] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    M. de Leeuw, T. Matsumoto and V. Regelskis, Coideal Quantum Affine Algebra and Boundary Scattering of the Deformed Hubbard Chain, J. Phys. A 45 (2012) 065205 [arXiv:1110.4596] [INSPIRE].ADSGoogle Scholar
  69. [69]
    G. Letzter, Coideal subalgebras and quantum symmetric pairs, in Math. Sci. Res. Inst. Publ. Vol. 43: New directions in Hopf algebras, Cambridge University Press, Cambridge U.K. (2002), pg. 117 [math/0103228].
  70. [70]
    G. Letzter, Quantum symmetric pairs and their zonal spherical functions, Transformation Groups 8 (2003) 261 [math/0204103].MathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    A.I. Molev, E. Ragoucy and P. Sorba, Coideal subalgebras in quantum affine algebras, Rev. Math. Phys. 15 (2003) 789 [math/0208140].MathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    I. Heckenberger and S. Kolb, Homogeneous right coideal subalgebras of quantized enveloping algebras, arXiv:1109.3986.
  73. [73]
    C. Gomez and R. Hernandez, The Magnon kinematics of the AdS/CFT correspondence, JHEP 11 (2006) 021 [hep-th/0608029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    J. Plefka, F. Spill and A. Torrielli, On the Hopf algebra structure of the AdS/CFT S-matrix, Phys. Rev. D 74 (2006) 066008 [hep-th/0608038] [INSPIRE].MathSciNetADSGoogle Scholar
  75. [75]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills,JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    S. Ghoshal and A.B. Zamolodchikov, Boundary S-matrix and boundary state in two-dimensional integrable quantum field theory, Int. J. Mod. Phys. A 9 (1994) 3841 [Erratum ibid. A 9 (1994) 4353] [hep-th/9306002] [INSPIRE].MathSciNetADSGoogle Scholar
  77. [77]
    V. Drinfeld, A new realization of Yangians and quantized affine algebras, Sov. Math. Dokl. 36 (1988) 212 [INSPIRE].MathSciNetGoogle Scholar
  78. [78]
    F. Spill and A. Torrielli, On Drinfelds second realization of the AdS/CFT su(2|2) Yangian, J. Geom. Phys. 59 (2009) 489 [arXiv:0803.3194] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  79. [79]
    G. Arutyunov, M. de Leeuw and A. Torrielli, On Yangian and Long Representations of the Centrally Extended su(2|2) Superalgebra, JHEP 06 (2010) 033 [arXiv:0912.0209] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    V. Regelskis, The Secret symmetries of the AdS/CFT reflection matrices, JHEP 08 (2011) 006 [arXiv:1105.4497] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    T. Matsumoto, S. Moriyama and A. Torrielli, A Secret Symmetry of the AdS/CFT S-matrix, JHEP 09 (2007) 099 [arXiv:0708.1285] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    M. de Leeuw, T. Matsumoto, S. Moriyama, V. Regelskis and A. Torrielli, Secret Symmetries in AdS/CFT, Phys. Scripta 02 (2012) 028502 [arXiv:1204.2366] [INSPIRE].CrossRefGoogle Scholar
  83. [83]
    M. de Leeuw, V. Regelskis and A. Torrielli, The Quantum Affine Origin of the AdS/CFT Secret Symmetry, J. Phys. A 45 (2012) 175202 [arXiv:1112.4989] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.ETH Zürich, Institut für Theoretische PhysikZurichSwitzerland
  2. 2.Department of MathematicsUniversity of YorkYorkU.K
  3. 3.Institute of Theoretical Physics and AstronomyVilnius UniversityVilniusLithuania

Personalised recommendations