Advertisement

Anomalous dimensions in deformed WZW models on supergroups

  • Constantin Candu
  • Vladimir MitevEmail author
  • Volker Schomerus
Open Access
Article

Abstract

We investigate a class of current-current, Gross-Neveu like, perturbations of WZW models in which the full left-right affine symmetry is broken to the diagonal global algebra only. Our analysis focuses on those supergroups for which such a perturbation preserves conformal invariance. A detailed calculation of the 2-point functions of affine primary operators to 3-loops is presented. Furthermore, we derive an exact formula for the anomalous dimensions of a large subset of fields to all orders in perturbation theory. Possible applications of our results, including the study of non-perturbative dualities, are outlined.

Keywords

Sigma Models Conformal and W Symmetry 

References

  1. [1]
    K. Efetov, Supersymmetry and theory of disordered metals, Adv. Phys. 32 (1983) 53 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D. Bernard, (Perturbed) conformal field theory applied to 2 − D disordered systems: an introduction, hep-th/9509137 [INSPIRE].
  3. [3]
    M.R. Zirnbauer, Conformal field theory of the integer quantum Hall plateau transition, hep-th/9905054 [INSPIRE].
  4. [4]
    N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M. Bershadsky, S. Zhukov and A. Vaintrob, PSL(n|n) σ-model as a conformal field theory, Nucl. Phys. B 559 (1999) 205 [hep-th/9902180] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    V. Mitev, T. Quella and V. Schomerus, Principal chiral model on superspheres, JHEP 11 (2008) 086 [arXiv:0809.1046] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Konechny and T. Quella, Non-chiral current algebras for deformed supergroup WZW models, JHEP 03 (2011) 124 [arXiv:1011.4813] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    C. Candu and V. Schomerus, Exactly marginal parafermions, Phys. Rev. D 84 (2011) 051704 [arXiv:1104.5028] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. Candu, Discrétisation des modèles sigma invariants conformes sur des supersphères et superespaces projectifs, Ph.D. Thesis, Université Paris 6, Paris France (2008).Google Scholar
  10. [10]
    C. Candu, T. Creutzig, V. Mitev and V. Schomerus, Cohomological reduction of σ-models, JHEP 05 (2010) 047 [arXiv:1001.1344] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    T. Quella, V. Schomerus and T. Creutzig, Boundary spectra in superspace σ-models, JHEP 10 (2008) 024 [arXiv:0712.3549] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    C. Candu and H. Saleur, A lattice approach to the conformal OSp(2S + 2|2S) supercoset σ-model. Part I: Algebraic structures in the spin chain. The Brauer algebra, Nucl. Phys. B 808 (2009) 441 [arXiv:0801.0430] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    C. Candu and H. Saleur, A Lattice approach to the conformal OSp(2S + 2|2S) supercoset σ-model. Part II: The Boundary spectrum, Nucl. Phys. B 808 (2009) 487 [arXiv:0801.0444] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    L. Rozansky and H. Saleur, Quantum field theory for the multivariable Alexander-Conway polynomial, Nucl. Phys. B 376 (1992) 461 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    V. Schomerus and H. Saleur, The GL(1|1) WZW model: from supergeometry to logarithmic CFT, Nucl. Phys. B 734 (2006) 221 [hep-th/0510032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    T. Quella and V. Schomerus, Free fermion resolution of supergroup WZNW models, JHEP 09 (2007) 085 [arXiv:0706.0744] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    S.K. Ashok, R. Benichou and J. Troost, Conformal current algebra in two dimensions, JHEP 06 (2009) 017 [arXiv:0903.4277] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    V. Schomerus, D-branes and deformation quantization, JHEP 06 (1999) 030 [hep-th/9903205] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    V. Serganova, On the Superdimension of an Irreducible Representation of a Basic Classical Lie Superalgebra, Lect. Notes Math. 2027 (2011) 253.MathSciNetCrossRefGoogle Scholar
  20. [20]
    A. Konechny and T. Quella, unpublished notes.Google Scholar
  21. [21]
    T.R. Klassen and E. Melzer, sine-Gordon not equal to massive Thirring and related heresies, Int. J. Mod. Phys. A 8 (1993) 4131 [hep-th/9206114] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    V. Serganova, Characters of Irreducible Representations of Simple Lie Superalgebras, Doc. Math., 1998 (1998) 583.MathSciNetGoogle Scholar
  23. [23]
    C. Candu, V. Mitev, T. Quella, H. Saleur and V. Schomerus, The σ-model on Complex Projective Superspaces, JHEP 02 (2010) 015 [arXiv:0908.0878] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Constantin Candu
    • 1
  • Vladimir Mitev
    • 2
    Email author
  • Volker Schomerus
    • 3
  1. 1.Institut für Theoretische PhysikZürichSwitzerland
  2. 2.Institut für Mathematik und Institut für Physik, Humboldt-Universität zu BerlinBerlinGermany
  3. 3.DESY Hamburg, Theory GroupHamburgGermany

Personalised recommendations